Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T06:54:13.992Z Has data issue: false hasContentIssue false

On a problem in algebraic number theory

Published online by Cambridge University Press:  24 October 2008

Extract

Let K be an algebraic number field. If q is a prime ideal of the ring of integers of K and α is a number of K prime to q then Mq(α) denotes the multiplicative group generated by α modulo q. In the paper [5] there is the remark: ‘We do not know whether for all a, b, c ∈ ℚ with abc ≠ 0, |a| ≠ 1,|b| ≠ 1,|c| ≠ 1 there exist infinitely many primes q with Mq (a) = Mq (b) = Mq (c).’

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Hasse, H.. Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Teil II: Reziprozitätsgesetz (Würzburg – Wien, 1965).CrossRefGoogle Scholar
[2]Warren, May. Multiplicative groups of fields. Proc. London Math. Soc. 24 (1972), 295306.Google Scholar
[3]Rodosskij, K. A.. Algoritm Evklida (Moskva, 1988).Google Scholar
[4]Schinzel, A. et Sierpiński, W.. Sur certaines hypothèses concernant les nombres premiers. Acta Arith. 4 (1958), 185208CrossRefGoogle Scholar
Schinzel, A. et Sierpiński, W.. correction, Acta Arith. 5 (1959), 259.Google Scholar
[5]Schinzel, A. and Wójcik, J.. On a problem in elementary number theory. Math. Proc. Cambridge Philos. Soc. 112 (1992), 225232.CrossRefGoogle Scholar
[6]Wójcik, J.. On the composite Lehmer numbers with prime indices III, Colloquium Mathematicum 45 (1981), 8190.CrossRefGoogle Scholar
[7]Wójcik, J.. On the congruence f(xk) = 0 mod q, where q is a prime and f is a k–normal polynomial. Acta Arithmetica 41 (1982), 151161.CrossRefGoogle Scholar