Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T08:30:29.808Z Has data issue: false hasContentIssue false

Normal solutions of elliptic equations

Published online by Cambridge University Press:  24 October 2008

Pekka Koskela
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, U.S.A.

Abstract

We extend a number of known criteria for normality of analytic and harmonic functions to the setting of solutions to elliptic partial differential equations. Some of the results hold for monotone Sobolev functions. We also discuss the boundary behaviour of monotone Sobolev functions.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Aulaskari, R. and Lappan, P.. An integral criterion for normal functions. Proc. Amer. Math. Soc. 103 (1988), 438440.CrossRefGoogle Scholar
[2] Aulaskari, R. and Lappan, P.. An integral condition for harmonic normal functions. Complex Variables 23 (1993), 213219.Google Scholar
[3] Beardon, A. F.. Montel's theorem for subharmonic functions and solutions of partial differential equations. Proc. Camb. Phil. Soc. 69 (1971), 123150.CrossRefGoogle Scholar
[4] Gilbarg, D. and Trudinger, N. S.. Elliptic partial differential equations of second order, 2nd edn (Springer-Verlag, 1983).Google Scholar
[5] Heinonen, J., Kilpeläinen, T. and Martio, O.. Nonlinear potential theory of degenerate elliptic equations (Oxford University Press, 1993).Google Scholar
[6] Heinonen, J. and Rossi, J.. Lindelöf's theorem for normal quasimeromorphic mappings. Michigan Math. J. 37 (1990), 219226.CrossRefGoogle Scholar
[7] Jenkins, J. A. and Oikawa, K.. On the boundary behavior of functions for which the Riemann image has finite spherical area. Kodai Math. J. 8 (1985), 317321.CrossRefGoogle Scholar
[8] Kilpeläinen, T.. Hölder continuity of solutions to quasilinear elliptic equations involving measures. Potential Analysis 3 (1994), 265272.CrossRefGoogle Scholar
[9] Koskela, P.Manfredi, J. J. and Villamor, E.. Regularity theory and traces of A-harmonic functions. Trans. Amer. Math. Soc., to appear.Google Scholar
[10] Lappan, P.. Some results on harmonic normal functions. Math. Z. 90 (1965), 155159.CrossRefGoogle Scholar
[11] Lappan, P.. Asymptotic values of normal harmonic functions. Math. Z. 94 (1966), 152156.CrossRefGoogle Scholar
[12] Lappan, P.. Fatou points of harmonic normal functions and uniformly normal functions. Math. Z. 102 (1967), 110114.CrossRefGoogle Scholar
[13] Lappan, P.. A non-normal locally uniformly univalent function. Bull. London Math. Soc. 5 (1973), 291294.CrossRefGoogle Scholar
[14] Lehto, O. and Virtanen, K. I.. Boundary behavior and normal meromorphic functions. Acta Math. 97 (1957), 4765.CrossRefGoogle Scholar
[15] Manfredi, J. J.. Regularity for minima of functionals with p–growth. J. Diff. Eq. 76 (1988), 203212.CrossRefGoogle Scholar
[16] Manfredi, J. J. and Villamor, E.. Traces of monotone Sobolev functions. J. Geom. Anal., to appear.Google Scholar
[17] Miniowitz, R.. Normal families of quasimeromorphic mappings. Proc. Amer. Math. Soc. 84 (1982), 3543.CrossRefGoogle Scholar
[18] Reshetnyak, Yu. G.. Boundary behavior of functions with generalized derivatives. Sib. Math. J. 13 (1972), 285290.CrossRefGoogle Scholar
[19] Schiff, J. L.. Normal families (Springer-Verlag, 1993).CrossRefGoogle Scholar
[20] Vuorinen, M.. Conformai geometry and quasiregular mappings, Lecture Notes in Math. 1319 (Springer-Verlag, 1988).CrossRefGoogle Scholar
[21] Ziemer, W. P.. Weakly differentiate functions (Springer-Verlag, 1989).CrossRefGoogle Scholar