Non-singular bilinear maps and stable homotopy classes of spheres
Published online by Cambridge University Press: 24 October 2008
Extract
A bilinear map ø Ra x Rb → Rc is non-singular if ø (x, y) = 0 implies x = 0 or y = 0. For background information on such maps see (4, 5, 6, 14). If we apply the ‘Hopf construction’ to ø, we get a map
defined by 2ø(x, y)) for all x ∈ Ra, y ∈ Rb satisfying ∥x∥2 + ∥y∥2 = 1. Homotopically, Jø coincides with the map obtained by first restricting and normalizing ø to , and then applying the standard Hopf construction ((13), p. 112). In any case, one gets an element [Jø] in , which in turn determines a stable homotopy class of spheres {Jø} in the d-stem , where d = a + b − c −1. An element in which equals {Jø} for some non-singular bilinear map ø will be called bilinearly representable. The first purpose of this paper is to prove
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 82 , Issue 3 , November 1977 , pp. 419 - 425
- Copyright
- Copyright © Cambridge Philosophical Society 1977
References
REFERENCES
- 9
- Cited by