Published online by Cambridge University Press: 29 October 2012
This paper studies the compact p∞-Selmer Iwasawa module X(E/F∞) of an elliptic curve E over a False Tate curve extension F∞, where E is defined over ℚ, having multiplicative reduction at the odd prime p. We investigate the p∞-Selmer rank of E over intermediate fields and give the best lower bound of its growth under certain parity assumption on X(E/F∞), assuming this Iwasawa module satisfies the H(G)-Conjecture proposed by Coates–Fukaya–Kato–Sujatha–Venjakob.