Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T14:33:58.182Z Has data issue: false hasContentIssue false

The low-frequency scattering by a perfectly conducting strip

Published online by Cambridge University Press:  24 October 2008

D. S. Jones
Affiliation:
Department of Mathematics, University College of North Staffordshire
B. Noble
Affiliation:
Department of Mathematics, Royal College of Science and TechnologyGlasgow

Extract

Various authors, e.g. Sommerfeld (8), Bouwkamp(i), Groschwitz and Hönl(2), Müller and Westpfahl(7), have considered approximate solutions to the problem of the diffraction of a plane wave by a narrow perfectly conducting strip. If the electric vector is polarized parallel to the strip they find that the scattering coefficient, for normal incidence, is given by, where k is the wave number, 2b the width of the strip and γ(= 0·5572…) being Euler's constant. Any attempt to discuss the convergence of such a pseudo-power series requires a knowledge of the higher order terms and naturally leads to the question of what is the proper expansion parameter.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1961

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bouwkamp, C. J., Diffraction theory (New York University Research Report EM-50, 1953).Google Scholar
(2)Groschwitz, E., and Hönl, H., Z. Physik, 131 (1952), 305.CrossRefGoogle Scholar
(3)de Hoop, A. T., Proc. K. Nederl. Akad. Wet. B, 58 (1955), 401.Google Scholar
(4)Jones, D. S., Phil. Mag. (7), 46 (1955), 957.CrossRefGoogle Scholar
(5)Meixner, J., and Schäfke, F. W., Mathieusche Funktionen und Sphäroidfunktionen (Berlin, 1954).CrossRefGoogle Scholar
(6)Morse, P. M., and Rubenstein, P. J., Phys. Rev. 54 (1938), 895.CrossRefGoogle Scholar
(7)Müller, R., and Westpfahl, K., Z. Physik. 134 (1953), 245.CrossRefGoogle Scholar
(8)Sommerfeld, A., Vorlesungen über theoretische Physik. vol. 4 (Wiesbaden, 1950).Google Scholar