No CrossRef data available.
Lifting amalgams and other colimits of monoids
Published online by Cambridge University Press: 24 October 2008
Extract
Let U = [{Mi: i ∈ I}; U; {øi: i ∈ I}] be a monoid amalgam of inclusions, i.e. U and each Mi is a monoid, and øi: U → Mi are inclusions. Let be the monoid free product of the amalgam U (see for example [10] for these concepts), and let β: B → H be a homomorphism of monoids. The type of question we seek to answer in this paper is under what conditions (on β, B and H) can we deduce that B is isomorphic to the free product of the amalgam
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 108 , Issue 1 , July 1990 , pp. 21 - 29
- Copyright
- Copyright © Cambridge Philosophical Society 1990
References
REFERENCES
[1]Brown, R. and Heath, P. R.. Lifting amalgamated sums and other colimits of groups and topological groups. Math. Proc. Cambridge Philos. Soc. 102 (1987), 273–280.CrossRefGoogle Scholar
[2]Conduché, F.. Au sujet de l'existence d'adjoints a droit aux foncteurs image reciproque que dans la catéorie des catégories. C.R. Acad. Sci. Paris Sér. A 275 (1972), 891–894.Google Scholar
[3]Fortunatov, V. A.. Perfect Semigroups. lzv. Vyssh. Uchebn. Zaved. Mat. 118 (1972), 80–89 (in Russian).Google Scholar
[4]Fortunatov, V. A.. Perfect ideal extensions. In Theory of Semigroups and its Applications No. 4 (Saratov. Gros. Univ., 1978), pp. 98–109 (in Russian).Google Scholar
[5]Hamilton, H.. Perfect completely regular semigroups. Math. Nachr. 123 (1985), 169–176.CrossRefGoogle Scholar
[6]Heath, P. R. and Kamps, K. H.. Lifting colimits of (topological) groupoids, and (topological) categories. In Categorical Topology, and its Relations to Analysis Algebra and Combinatorics (World Scientific Press, 1989).Google Scholar
[7]Heath, P. R. and Parmenter, K. M.. Lifting Colimits in various categories. Math. Proc. Cambridge Philos. Soc. 104 (1988), 193–197.CrossRefGoogle Scholar
[8]Howie, J.. Pullback functors and crossed complexes. Cahiers Topologié Géom. Différentielle Catégorigues 20 (1979), 281–296.Google Scholar
[10]Lallement, G.. Sur les Produits Amalgames de Monoides. In Séminaire d'Algèbre Paul Dubriel, Paris 1975–1976 (29ième Année). Lecture Notes in Math. vol. 586 (Springer-Verlag, 1977), pp. 25–33.Google Scholar
[11]McKnight, J. D. Jr and Storey, A. J.. Equidivisible Semigroups. J. Algebra 12 (1969), 24–48.CrossRefGoogle Scholar
[13]Vagner, V. V.. Algebraic topics of the general theory of partial connections in fibre bundles. lzv. Vyssh. Uchebn. Zaved. Mat. 11 (1968), 26–32 (in Russian).Google Scholar