Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T20:22:04.118Z Has data issue: false hasContentIssue false

Isometric immersions into a homogeneous Lorentzian Heisenberg group and rigidity

Published online by Cambridge University Press:  01 July 2009

SINUÊ DAYAN BARBERO LODOVICI
Affiliation:
Departamento de Matemática Aplicada, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, CEP 05508-900, São Paulo, SP, Brazil. e-mail: [email protected] and [email protected]
FERNANDO MANFIO
Affiliation:
Departamento de Matemática Aplicada, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, CEP 05508-900, São Paulo, SP, Brazil. e-mail: [email protected] and [email protected]

Abstract

In this paper we prove an existence result for local and global isometric immersions of semi-Riemannian surfaces into the three dimensional Heisenberg group endowed with a homogeneous left–invariant Lorentzian metric. As a corollary, we prove a rigidity result for such immersions.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Dajczer, M.Submanifolds and Isometric Immersion. Mathematics Lecture Series. 13 (Publish or Perish, 1990).Google Scholar
[2]Daniel, B. Isometric immersions into S n × and H n × and applications to minimal surfaces. To appear in Trans. Amer. Math. Soc.Google Scholar
[3]Daniel, B.Isometric immersions into 3-dimensional homogeneous manifolds. Comment. Math. Helv. 82 (2007), 87131.Google Scholar
[4]Dumitrescu, S. and Zeghib, A. Géométries Lorentziennes de dimension 3: classification et complétude. Preprint 2006 (arXiv:math/0703846).Google Scholar
[5]Falbel, E., Piccione, P. and Tausk, D. V. An isometric immersion theorem into contact sub-Riemannian spaceforms. Preprint 2008.Google Scholar
[6]Guediri, M.Sur la complétude des pseudo-métriques invariantes à gauche sur les groupes de Lie nilpotens. Rend. Sem. Mat. Univ. Politec., Torino. 52 (4) (1994), 371376.Google Scholar
[7]Lodovici, S. D. B.An isometric immersion theorem in Sol3. Matemática Contemporânea. 30 (2006), 109123.CrossRefGoogle Scholar
[8]Piccione, P. and Tausk, D. V.An existence theorem for G-structure preserving affine immersions. Indiana Univ. Math. J. 57 (2008), 14311465.Google Scholar
[9]Rahmani, N. and Rahmani, S.Lorentzian geometry of the Heisenberg group. Geom. Dedicata 118 (2006), 133140.CrossRefGoogle Scholar
[10]Scott, P.The geometries of 3-manifolds. Bull. London Math. Soc. 15 (1983), 401487.Google Scholar