Article contents
Invariant domains and singularities
Published online by Cambridge University Press: 24 October 2008
Abstract
Let U be an invariant component of the Fatou set of an entire transcendental function f such that the iterates of f tend to ∞ in U. Let P(f) be the closure of the set of the forward orbits of all critical and asymptotic values of f. We show that there exists a sequence pn∈P(f) such that dist(pn, U) = o(|pn|), where dist(·, ·) denotes Euclidean distance. On the other hand, we give an example where dist (P(f), U) > 0. In this example, U is bounded by a Jordan curve.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 117 , Issue 3 , May 1995 , pp. 525 - 532
- Copyright
- Copyright © Cambridge Philosophical Society 1995
References
REFERENCES
[1]Baker, I. N.. Limit functions and sets of non-normality in iteration theory. Ann. Acad. Sci. Fenn. Ser. A I Math., no. 467 (1970).Google Scholar
[2]Baker, I. N.. The domains of normality of an entire function. Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), 277–283.Google Scholar
[3]Baker, I. N.. Iteration of entire functions: an introductory survey. In Lectures on complex analysis (World Scientific, 1987), pp. 1–17.Google Scholar
[4]Baker, I. N.. Wandering domains for maps of the punctured plane. Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 191–198.Google Scholar
[5]Baker, I. N.. Infinite limits in the iteration of entire functions. Ergodic Theory Dynamical Systems 8 (1988), 503–507.Google Scholar
[6]Baker, I. N. and Weinreich., J.Boundaries which arise in the iteration of entire functions. Rev. Roumaine Math. Pures Appl. 36 (1991), 413–420.Google Scholar
[7]Beardon., A. F.Iteration of rational functions. Graduate texts in mathematics 132 (Springer, 1991).CrossRefGoogle Scholar
[8]Bergweiler., W.Iteration of meromorphic functions. Bull. Amer. Math. Soc. (N.S.) 29 (1993), 151–188.CrossRefGoogle Scholar
[10]Douady, A. and Hubbard., J. H.On the dynamics of polynomial-like mappings. Ann. Sci. École Norm. Sup. (4) 18 (1985), 287–343.CrossRefGoogle Scholar
[11]Eremenko, A. E. and Lyubich., M. Yu.Examples of entire functions with pathological dynamics. J. London Math. Soc. (2) 36 (1987), 458–468.CrossRefGoogle Scholar
[12]Eremenko, A. E. and Lyubich., M. Yu.The dynamics of analytic transforms. Leningrad Math. J. 1 (1990), 563–634.Google Scholar
[13]Eremenko, A. E. and Lyubich., M. Yu.Dynamical properties of some classes of entire functions. Ann. Inst. Fourier (Grenoble) 42 (1992), 989–1020.CrossRefGoogle Scholar
[14]Herman., M.Are there critical points on the boundary of singular domains? Comm. Math. Phys. 99 (1985), 593–612.Google Scholar
[16]Stallard., G. M.Entire functions with Julia sets of zero measure. Math. Proc. Cambridge Philos. Soc. 108 (1990), 551–557.Google Scholar
[17]Steinmetz., N.Rational iteration. Studies in Mathematics 16 (de Gruyter, 1993).CrossRefGoogle Scholar
- 28
- Cited by