Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T13:32:57.370Z Has data issue: false hasContentIssue false

A generalized Euler–Lagrange equation

Published online by Cambridge University Press:  24 October 2008

A. M. Arthurs
Affiliation:
University of York

Abstract

A generalized Euler–Lagrange equation is presented. It provides a unified approach to boundary value problems in potential theory, diffusion, magnetostatics, and integral equations.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Courant, R. and Hilbert, D.Methods of mathematical physics, vol. 1, (Interscience, 1953).Google Scholar
(2)Dresner, L.J. Math. Phys. 2 (1961), 829.CrossRefGoogle Scholar
(3)Schrader, D. M.J. Math. Phys. 8 (1967), 870.CrossRefGoogle Scholar
(4)Noble, B.Univ. Wisconsin Math. Res. Center Rep. No. 473 (1964).Google Scholar
(5)Rall, L. B.J. Math. Anal. Appl. 14 (1966), 174.CrossRefGoogle Scholar
(6)Arthurs, A. M.Proc. Roy. Soc. A 298 (1967), 97.Google Scholar
(7)Arthurs, A. M.Proc. Cambridge Philos. Soc. 65, (1969), 803.CrossRefGoogle Scholar