No CrossRef data available.
A generalization of a theorem of Sharp on big Cohen-Macaulay modules
Published online by Cambridge University Press: 24 October 2008
Extract
Let (A, m) be a (commutative, Noetherian) local ring, and a1, …, an a system of parameters for A. Let M be an A-module. We say that M is a big Cohen-Macaulay module with respect to a1, …, an if a1, …, an, is an M-sequence. In this case we call M balanced if any system of parameters for A is an M-sequence.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 108 , Issue 2 , September 1990 , pp. 193 - 195
- Copyright
- Copyright © Cambridge Philosophical Society 1990
References
REFERENCES
[1]Bartijn, J. and Strooker, J. R.. Modifications monomiales. In Séminaire d'Algèbre Paul Dubriel et Marie-Paul Malliavin, Paris 1982, Lecture Notes in Math. vol. 1029 (Springer-Verlag, 1983), pp. 192–217.Google Scholar
[3]Griffith, P.. Maximal Cohen–Macaulay modules and representation theory. J. Pure Appl. Algebra 13 (1978), 321–334.CrossRefGoogle Scholar
[6]Ogoma, T.. Fibre products of Noetherian rings and their applications. Math. Proc. Cambridge Philos. Soc. 97 (1985), 231–241.CrossRefGoogle Scholar
[7]Sharp, R. Y.. Certain countably generated big Cohen–Macaulay modules are balanced. Math. Proc. Cambridge Philos. Soc. 105 (1989), 73–77.CrossRefGoogle Scholar
[8]Zarzuela, S.. Systems of parameters for non-finitely generated modules and big Cohen–Macaulay modules. Mathematika 35 (1988), 207–215.CrossRefGoogle Scholar