Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T09:42:14.909Z Has data issue: false hasContentIssue false

Equivariant integrality theorems for differentiable manifolds

Published online by Cambridge University Press:  24 October 2008

R. S. Roberts
Affiliation:
University of Durham

Extract

In differential topology it is often useful to be able to find restrictions on the possible vector bundles over a given manifold. For the non-equivariant case these restrictions usually state that some rational multinomial in the various charac teristic classes is an integral multiple of the fundamental cocyle.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Atiyah, M. F., Bott, R. and Shapiro, A.Clifford modules. Topology 3, Supplement 1, (1964), 338.CrossRefGoogle Scholar
(2)Atiyah, M. F. and Segal, G. B.The index of effiptic operators: II. Ann. of Math. 87 (1968), 531545.CrossRefGoogle Scholar
(3)Atiyah, M. F. and Segal, G. B.Lectures on equivariant K-Theory, notes by Schwarzenberger, R. L. E., University of Warwick.Google Scholar
(4)Atiyah, M. F. and Singer, I. M.The index of elliptic operators: I. Ann. of Math. 87 (1968), 484530.CrossRefGoogle Scholar
(5)Conner, P. E. and Floyd, E. E.Differentiable periodic maps (Berlin, Gottingen, Heidelberg: Springer-Verlag, 1964).Google Scholar
(6)Hirzebruch, F.Topological methods in algebraic geometry, third edition (Berlin, Heidelberg, New York: Springer-Verlag, 1966).Google Scholar
(7)Mayer, K. H.Elliptische differentialoperatoren und ganzzahligkeitssatze fur charak teristische zahlen. Topology, 4 (1965), 295313.CrossRefGoogle Scholar
(8)Roberts, R. S. Equivariant integrality theorems for differentiable manifolds. Ph.D. thesis, University of Liverpool (1967).Google Scholar
(9)Segal, G. B.Equivariant K-theory. I.H.E.S., 34 (1968), 129151.Google Scholar