Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T13:50:36.677Z Has data issue: false hasContentIssue false

Covering a sphere by equal circles, and the rigidity of its graph

Published online by Cambridge University Press:  24 October 2008

T. Tarnai
Affiliation:
University of Cambridge, Engineering Department, Trumpington Street, Cambridge CB2 1PZ
Zs. Gáspár
Affiliation:
Research Group for Applied Mechanics, Hungarian Academy of Sciences, Budapest, Műegyetem rkp. 3, H-1521, Hungary

Abstract

How must a sphere be covered by n equal circles so that the angular radius of the circles will be as small as possible? In this paper, conjectured solutions of this problem for n = 15 to 20 are given and some sporadic results for n > 20 (n = 22, 26, 38, 42, 50) are presented. The local optima are obtained by using a ‘cooling technique’ based on the theory of bar-and-joint structures. Thus the graph of the coverings by circles is considered as a spherical cable net in which the edge lengths are uniformly decreased, e.g. due to a uniform decrease in the temperature, until the graph becomes rigid and tensile stresses appear in the cables.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Almgren, F. J. and Taylor, J. E.. The geometry of soap films and soap bubbles. Scientific American, 07 1976, 8293.CrossRefGoogle Scholar
[2]Asimow, L. and Roth, B.. The rigidity of graphs. Trans. Amer. Math. Soc. 245 (1978), 279289.CrossRefGoogle Scholar
[3]Brown, L. D. and Lipscomb, W. N.. Closo boron hydrides with 13 to 24 boron atoms. Inorganic Chemistry 16 (1977), 29892996.CrossRefGoogle Scholar
[4]Calladine, C. R.. Modal stiffness of a pretensioned cable net. Int. J. Solids Structures 18 (1982), 829846.CrossRefGoogle Scholar
[5]Crowther, R. A., Finch, J. T. and Pearse, B. M. F.. On the structure of coated vesicles. J. Mol. Biol. 103 (1976), 785798.CrossRefGoogle ScholarPubMed
[6]Tóth, G. Fejes. Kreisüberdeckungen der Sphäre. Studia Sci. Math. Hungar. 4 (1969), 225247.Google Scholar
[7]Tóth, L. Fejes. On covering a spherical surface with equal spherical caps (in Hungarian). Matematikai és Fizikai Lapok 50 (1943), 4046.Google Scholar
[8]Tóth, L. Fejes. Lagerungen in der Ebene auf der Kugel und im Raum (Springer-Verlag, 1953), p. 170.CrossRefGoogle Scholar
[9]Tóth, L. Fejes. Lagerungen in der Ebene auf der Kugel und im Raum, 2nd edition (Springer-Verlag, 1972).CrossRefGoogle Scholar
[10]Tóth, L. Fejes. Private communication (1985).Google Scholar
[11]Frank, F. C. and Kasper, J. S.. Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta Cryst. 11 (1958), 184190.CrossRefGoogle Scholar
[12]Gáspár, Zs.. Some new multi-symmetric packings of equal circles on a 2-sphere. Acta Cryst. B45 (1989), 452453.CrossRefGoogle Scholar
[13]Gáspár, Zs. and Tarnai, T.. Cable nets and circle-coverings on a sphere. Z. Angew. Math. Mech. 70 (1990), T741–T742.Google Scholar
[14]Goldberg, M.. Axially symmetric packing of equal circles on a sphere. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967), 3748.Google Scholar
[15]Housecroft, C. E.. Boranes and Metalloboranes (Ellis Horwood and J. Wiley, 1990).Google Scholar
[16]Jucovič, E.. Some coverings of a spherical surface with equal circles (in Slovakian). Mat.-Fyz. Časopis. Slovensk. Akad. Vied. 10 (1960), 99104.Google Scholar
[17]Katsura, I.. Theory on the structure and stability of coated vesicles. J. Theor. Biol. 103 (1983), 6375.CrossRefGoogle ScholarPubMed
[18]Kroto, H.. Space, stars, C60 and soot. Science 242 (1988), 11391145.CrossRefGoogle ScholarPubMed
[19]Matzke, E. B.. The three-dimensional shape of bubbles in foam. Amer. J. Botany 33 (1946), 5880.CrossRefGoogle ScholarPubMed
[20]Melnyk, T. W., Knop, O. and Smith, W. R.. Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited. Canadian J. Chemistry 55 (1977), 17451761.CrossRefGoogle Scholar
[21]Meschkowski, H.. Unsolved and Unsolvable Problems in Geometry (Oliver and Boyd, 1966).Google Scholar
[22]Schütte, K.. Überdeckung der Kugel mit höchstens acht Kreisen. Math. Ann. 129 (1955), 181186.CrossRefGoogle Scholar
[23]Szabó, J.. The equation of state-change of structures. Periodica Polytechnica, Mech. Engng 17 (1973), 5571.Google Scholar
[24]Szabó, J. and Kollár, L.. Structural Design of Cable-Suspended Roofs (Ellis Horwood, 1984).Google Scholar
[25]Tarnai, T.. Engineering methods in spherical circle-packings and circle-coverings. In 3. Kolloquium über Diskrete Geometrie (Institut für Mathematik der Universität Salzburg, 1985), pp. 253262.Google Scholar
[26]Tarnai, T.. Geodesic domes and spherical circle-coverings. In Proceedings of the IASS International Congress, vol. 4 (Gosstroy, 1985), pp. 99113.Google Scholar
[27]Tarnai, T. and Gáspár, Zs.. Improved packing of equal circles on a sphere and rigidity of its graph. Math. Proc. Cambridge Philos. Soc. 93 (1983), 191218.CrossRefGoogle Scholar
[28]Tarnai, T. and Gáspár, Zs.. Covering the sphere with equal circles. In Intuitive Geometry, Colloquia Mathematica Societatis János Bolyai, vol. 48 (North-Holland, 1985), pp. 545550.Google Scholar
[29]Tarnai, T. and Gáspár, Zs.. Covering the sphere with 11 equal circles. Elem. Math. 41 (1986), 3538.Google Scholar
[30]Tarnai, T. and Gáspár, Zs.. Multi-symmetric close packings of equal spheres on the spherical surface. Acta Cryst. A43 (1987), 612616.CrossRefGoogle Scholar
[31]Tarnai, T. and Gáspár, Zs.. Arrangement of 23 points on a sphere. (On a conjecture of R. M. Robinson.) Proc. Roy. Soc. Lond. Ser. A (to appear).Google Scholar