Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T14:24:17.006Z Has data issue: false hasContentIssue false

Continuity of solutions of Schrödinger equations

Published online by Cambridge University Press:  24 October 2008

Mitsuru Nakai
Affiliation:
Department of Mathematics, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466, Japan

Extract

We denote by N(x, y) the Newtonian kernel on the d-dimensional Euclidean space (where d ≥ 2) so that N(x, y) = log|xy|-1 for d = 2 and N(x, y) = |xy|2−d for d ≥ 3. A signed Radon measure μ on an open subset Ω in d is said to be of Kato class if

for every y in Ω. where |μ| is the total variation measure of μ.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Aizenmann, M. and Simon, B.. Brownian motion and Harnack inequality for Schrödinger operator. Comm. Pure Appl. Math. 35 (1982), 209271.CrossRefGoogle Scholar
[2]Boukricha, A.. Das Picard-Prinzip und verwandte Fragen bei Störung von harmonischen Räumen. Math. Ann. 239 (1979), 247270.CrossRefGoogle Scholar
[3]Boukricha, A., Hansen, W. and Hueber, H.. Continuous solutions of the generalized Schrödinger equation and perturbation of harmonic spaces. Exposition. Math. 5 (1987), 97135.Google Scholar
[4]Chiarenza, F., Fabes, E. and Garofalo, N.. Harnack's inequality for Schrödinger operators and the continuity of solutions. Proc. Amer. Math. Soc. 98 (1986), 415425.Google Scholar
[5]Constantinescu, C. and Cornea, A.. Potential Theory on Harmonic Spaces (Springer-Verlag, 1972).CrossRefGoogle Scholar
[6]Helms, L. L.. Introduction to Potential Theory (Wiley-Interscience, 1969).Google Scholar
[7]Kato, T.. Schrödinger operators with singular potentials. Israel J. Math. 13 (1972), 135148.CrossRefGoogle Scholar
[8]Maeda, F.-Y.. Dirichlet Integrals on Harmonic Spaces. Lecture Notes in Math. vol. 803 (Springer-Verlag, 1980).CrossRefGoogle Scholar
[9]Nakai, M.. Green functions for Schrödinger operators. Bull. Nagoya Inst. Tech. 40 (1988), 123132 (in Japanese).Google Scholar
[10]Schechter, M.. Spectra of Partial Differential Operators (North-Holland, 1971).Google Scholar
[11]Simon, B.. Schrödinger semigroups. Bull. Amer. Math. Soc. 7 (1982), 447526.CrossRefGoogle Scholar
[12]Stummel, F.. Singuläre elliptische Differentialoperatoren in Hilbertschen Räumen. Math. Ann. 132 (1956), 150176.CrossRefGoogle Scholar