Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T10:52:52.257Z Has data issue: false hasContentIssue false

A certain triple Whitehead product

Published online by Cambridge University Press:  24 October 2008

P. J. Hilton
Affiliation:
Pembroke CollegeCambridge

Extract

The triple Whitehead product we consider in this note is [[ɩn, ɩn], ɩn] ∈ π3n−2(Sn), where ɩn generates πn(Sn). It follows from the Jacobi identity for Whitehead products

α ∈ πp(X), β ∈ πq(X), γ ∈ πr(X), that 3[[ɩn, ɩn], ɩn] = 0. Now, if n is odd, 2[ɩn, ɩn] = 0, so that 2[[ɩn, ɩn], ɩn] = 0, whence

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Barratt, M. G. and Hilton, P. J.On join operations in homotopy groups. Proc. Lond. math. Soc. (3), 1 (1953), 430–45.CrossRefGoogle Scholar
(2)Borel, A. and Serre, J.-P.Groupes de Lie et puissances réduites de Steenrod, Amer. J. Math. 75 (1953), 409–48.CrossRefGoogle Scholar
(3)Chang, S. C.Some suspension theorems. Quart. J. Math. (2), 1 (1950), 310–17.CrossRefGoogle Scholar
(4)Chang, S. C. On πr(Sp V Sq). (In the Press.)Google Scholar
(5)Hilton, P. J.Suspension theorems and the generalized Hopf invariant. Proc. Lond. math. Soc. (3), 1 (1951), 462–93.CrossRefGoogle Scholar
(6)Hilton, P. J.The Hopf invariant and homotopy groups of spheres. Proc. Camb. phil. Soc. 48 (1952), 547–54.CrossRefGoogle Scholar
(7)Hilton, P. J. On the Hopf invariant of a composition element. J. Lond. math. Soc. (In the Press.)Google Scholar
(8)Hilton, P. J. and Whitehead, J. H. C.Note on the Whitehead product. Ann. Math., Princeton, 58 (1953), 429–42.CrossRefGoogle Scholar
(9)Serre, J.-P.Homologie singulière des espaces fibrés. Ann. Math., Princeton, 54 (1951), 425505.CrossRefGoogle Scholar
(10)Serre, J.-P.Sur la suspension de Freudenthal. C.R. Acad. Sci., Paris, 234 (1952), 1340–2.Google Scholar
(11)Serre, J.-P.Groupes d'homotopie et classes de groupes Abéliens. Ann. Math., Princeton, 58 (1953), 258–94.CrossRefGoogle Scholar
(12)Steenrod, N. E.Cohomology invariants of mappings. Ann. Math., Princeton, 50 (1949), 954–88.CrossRefGoogle Scholar
(13)Whitehead, G. W.On the Freudenthal theorems. Ann. Math., Princeton, 57 (1953), 209–28.CrossRefGoogle Scholar