No CrossRef data available.
Absolute summability factors of Fourier series
Published online by Cambridge University Press: 24 October 2008
Extract
1. Let f(t) be a perodic function with period 2π and integrable in the sense of Lebesgue over (–π, π), then its Fourier series is
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 68 , Issue 1 , July 1970 , pp. 61 - 65
- Copyright
- Copyright © Cambridge Philosophical Society 1970
References
REFERENCES
(1)Bosanquet, L. S.Note on the Bohr-Hardy Theorem. J. London Math. Soc. 17 (1942), 166–173.CrossRefGoogle Scholar
(3)Chow, H. C.Note on convergence and summability factors. J. London Math. Soc. 29 (1954), 459–476.CrossRefGoogle Scholar
(4)Kogbetliantz, E.Sur les series absolument sommables par la methode des moyennes arithmetiques, Bull. Sci. Math. (2), 49 (1925), 234–256.Google Scholar
(5)Misra, M. L.On the determination of the jump of the function by its Fourier coefficients. Quart. J. Math. Oxford Ser. 18 (1947), 129–134.Google Scholar
(6)Pati, T.The absolute summability factors of infinite series, Duke Math. J. 21 (1954), 271–283.CrossRefGoogle Scholar
(7)Prasad, B. N.On the absolute summability of Fourier series and bounded variation of Power series. Proc. London Math. Soc. (2), 35 (1933), 407–424.CrossRefGoogle Scholar
(8)Prasad, B. N. and Bhatt, S. N.The summability factors of Fourier series. Duke Math. J. 24 (1957), 103–120.CrossRefGoogle Scholar