Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T08:38:32.277Z Has data issue: false hasContentIssue false

94.05 Improved bounds on the sizes of S·P numbers

Published online by Cambridge University Press:  23 January 2015

Paul Myer Kominers
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, e-mail:[email protected]
Scott Duke Kominers
Affiliation:
Department of Mathematics, Harvard Universityc/o 8520 Burning Tree Road, Bethesda, MD 20817 USA, e-mail:[email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Parameśwaran, S., Numbers and their digits – a structural pattern, Math. Gaz. 81 (July 1997) p. 263.CrossRefGoogle Scholar
2. Belcher, Paul, Godwin, H. J., Lobb, Andrew, Lord, Nick, Robin McLean, K. and Williams, Phillip, On S·P numbers, Math. Gaz. 82 (March 1998) pp. 7275.CrossRefGoogle Scholar
3. Robin McLean, K., There are only three S·P numbers, Math. Gaz. 83 (March 1999) pp. 3239.CrossRefGoogle Scholar
4. Bussmann, Ezra, S·P numbers in bases other than 10, Math. Gaz. 85 (July 2001) pp. 245248.CrossRefGoogle Scholar
5. Shah Ali, H. A., The number of S·P numbers is finite, Math. Gaz. 92 (March 2008) pp. 6465.CrossRefGoogle Scholar
6. Weisstein, Eric W., Lambert's W-function, CRC Concise Encyclopedia of Mathematics, CRC Press (2003) pp. 16841685.Google Scholar
7. Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J. and Knuth, D. E., On the Lambert W function, Adv. Compo Math. 5 (December 1996) pp. 329359.CrossRefGoogle Scholar