Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T10:42:50.907Z Has data issue: false hasContentIssue false

94.09 Lattice polygons and the number 12: an elementary proof

Published online by Cambridge University Press:  23 January 2015

Alberto Zorzi*
Affiliation:
Dipartmento di Matematica Applicata, Università Ca' Foscari di Venezia, Dorsoduro 3825/E, 30123 Venezia, Italy, e-mail:[email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Poonen, B. and Rodriguez-Villegas, F., Lattice polygons and the number 12, Amer. Math. Monthly 107 (2000), pp. 238250.Google Scholar
2. Burns, J. M. and O'Keeffe, D., Lattice polygons in the plane and the Number 12, Irish Math. Soc. Bulletin 57 (2006), pp. 6568.Google Scholar
3. Repovš, D., Skonpenkov, M. and Cencelj, M., A short proof of the twelve-point theorem, Mathematical Notes 77 (2005), pp. 108111.Google Scholar
4. Stone, M. G., A mnemonic for areas of poloygons, Amer. Math. Montly 93 (1986), pp. 479480.CrossRefGoogle Scholar
5. Haigh, G., A ‘natural’ approach to Pick's theorem, Math. Gaz. 64 (October 1980), p.173.Google Scholar
6. Varberg, D. E., Pick's theorem revisited, Amer. Math. Monthly 92 (1985), pp. 584587.Google Scholar
7. Fomin, D., Genkin, S. and Itenberg, I., Mathematical Circles, American Math. Soc. (1996).Google Scholar
8. Ronan, M., Symmetry and the Monster, Oxford University Press (2006).Google Scholar