No CrossRef data available.
Article contents
108.34 One sharpening of the Garfunkel-Bankoff inequality and some applications
Published online by Cambridge University Press: 23 August 2024
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
- Type
- Notes
- Information
- Copyright
- © The Authors, 2024 Published by Cambridge University Press on behalf of The Mathematical Association
References
Bottema, O., Djordjevic, R. Z., Janic, R. R., Mitrinovic, D. S., Vasic, P. M., Geometric inequalities., Groningen, Wolters-Noordhoff (1969).Google Scholar
Lukarevski, M., A new look at the fundamental triangle inequality, Math. Mag. 96 (2), (2023) p. 141–149.10.1080/0025570X.2023.2176106CrossRefGoogle Scholar
Problem 825 (proposed by J. Garfunkel, solution by L. Bankoff) Crux Math. 9 (1983) p. 79 and 10 (1984) p. 168.Google Scholar
Lukarevski, M., A simple proof of Kooi’s inequality, Math. Mag. 93 (3), (2020) p. 225.CrossRefGoogle Scholar
Lukarevski, M., Wolstenholme’s inequality and its relation to the Barrow and Garfunkel-Bankoff inequalities, Math. Gaz. 107 (March 2023) pp. 70–75.CrossRefGoogle Scholar
Lukarevski, M., Marinescu, D. S., A refinement of the Kooi’s inequality, Mittenpunkt and applications, J. Inequal. Appl. 13 (3), (2019) pp. 827–832.CrossRefGoogle Scholar
Lukarevski, M., Proximity of the incentre to the inarc centres, Math. Gaz. 105 (March 2021) pp. 142–147.CrossRefGoogle Scholar
Finsler, P., Hadwiger, H., Einige Relationen im Dreieck, Commentarii Mathematici Helvetici, 10 (1937), no.1, pp. 316–326.CrossRefGoogle Scholar
Lukarevski, M., The circummidarc triangle and the Finsler-Hadwiger inequality, Math. Gaz. 104 (July 2020) pp. 335–338.CrossRefGoogle Scholar
Lukarevski, M., Exarc radii and the Finsler-Hadwiger inequality, Math. Gaz. 106 (March 2022) pp. 138–143.CrossRefGoogle Scholar
You have
Access