We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Bottema, O., Djordjevic, R. Z., Janic, R. R., Mitrinovic, D. S., Vasic, P. M., Geometric inequalities., Groningen, Wolters-Noordhoff (1969).Google Scholar
2
Lukarevski, M., A new look at the fundamental triangle inequality, Math. Mag.96 (2), (2023) p. 141–149.CrossRefGoogle Scholar
3
Problem 825 (proposed by J. Garfunkel, solution by L. Bankoff) Crux Math. 9 (1983) p. 79 and 10 (1984) p. 168.Google Scholar
4
Lukarevski, M., A simple proof of Kooi’s inequality, Math. Mag.93 (3), (2020) p. 225.CrossRefGoogle Scholar
5
Lukarevski, M., Wolstenholme’s inequality and its relation to the Barrow and Garfunkel-Bankoff inequalities, Math. Gaz.107 (March 2023) pp. 70–75.CrossRefGoogle Scholar
6
Lukarevski, M., Marinescu, D. S., A refinement of the Kooi’s inequality, Mittenpunkt and applications, J. Inequal. Appl.13 (3), (2019) pp. 827–832.CrossRefGoogle Scholar
7
Lukarevski, M., Proximity of the incentre to the inarc centres, Math. Gaz.105 (March 2021) pp. 142–147.CrossRefGoogle Scholar
8
Leversha, G., The geometry of the triangle, UKMT (2013).Google Scholar
9
Finsler, P., Hadwiger, H., Einige Relationen im Dreieck, Commentarii Mathematici Helvetici, 10 (1937), no.1, pp. 316–326.CrossRefGoogle Scholar
10
Lukarevski, M., The circummidarc triangle and the Finsler-Hadwiger inequality, Math. Gaz.104 (July 2020) pp. 335–338.CrossRefGoogle Scholar
11
Lukarevski, M., Exarc radii and the Finsler-Hadwiger inequality, Math. Gaz.106 (March 2022) pp. 138–143.CrossRefGoogle Scholar