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Using  this becomes  or , as claimed. Also,

applying the AM-GM inequality to ,  and  we get
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which by Lemmas 9 and 11 gives  or . So .
[WEIFFTTIE].

�2 ≥ 27r4 � ≥ tr t
2R ≥ � ≥ tr

Theorem 9: We have . [WEIFFTTIE].4s3 ≥ 27�R

Proof: Since , the result follows at once by
Lemma 10.

2s = a + b + c ≥ 3 3 abc
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108.34 One sharpening of the Garfunkel-Bankoff inequality
and some applications

Garfunkel-Bankoff inequality
For a triangle  we use the notation  and  for the

cyclic sum and the cyclic product respectively. Then we have
ABC ∑ tan2 A

2 ∏ sin A
2

Theorem 1: In any triangle  holdsABC

∑ tan2 A
2 ≥ 2 − 8 ∏ sin A

2 + (1 − 8 ∏ sin A
2) ∏ tan2 A

2. (1)
Proof: By the well-known identities

∑ tan2 A
2

=
(4R + r)2

s2
− 2,   ∏ sin

A
2

=
r

4R
,   ∏ tan

A
2

=
r
s

where ,  and  are the circumradius, inradius and semiperimeter of the
triangle, inequality (1) is transformed to

R r s

(4R + r)2

s2
− 2 ≥ 4 −

2r
R

+
r2

s2 (1 −
2r
R )
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and this is equivalent to

s2 ≤
R (4R + r)2 − r2 (R − 2r)

2 (2R − r)
. (2)

To prove the last inequality we use the right-hand side of the fundamental
inequality of a triangle [1, 5.10], [2]

2R2 + 10Rr − r2 − 2 (R − 2r) R (R − 2r) ≤ s2 (3)

≤ 2R2 + 10Rr − r2 + 2 (R − 2r) R (R − 2r).
Simple algebra gives

R (4R + r)2 − r2 (R − 2r)
2 (2R − r) =

8R3 + 4R2r + r3

2R − r
.

We prove that

2R2 + 10Rr − r2 + 2 (R − 2r) R (R − 2r) ≤
8R3 + 4R2r + r3

2R − r
.

We put , . Then the last inequality can be rewritten ast = r
R 0 < t ≤ 1

2

2 + 10t − t2 + 2 (1 − 2t) 1 − 2t ≤
8 + 4t + t3

2 − t
and it is true since

⎡⎢⎣
8 + 4t + t3

2 − t
− (2 + 10t − t2)⎤⎥⎦

2

− [2 (1 − 2t) 1 − 2t]2

=
8t3 (1 − 2t)2

(2 − t)2
≥ 0.

The classic Garfunkel-Bankoff inequality for a triangle  is [3]ABC

tan2 A
2

+ tan2 B
2

+ tan2 C
2

≥ 2 − 8 sin
A
2

sin
B
2

sin
C
2

. (4)

By the simple inequality , it is stronger than the well-
known inequality .

1 − 8 ∏ sin 1
2A ≥ 0

tan2 A
2 + tan2 B

2 + tan2 C
2 ≥ 1

It is obvious that Theorem 1 gives a sharpening of the Garfunkel-
Bankoff inequality (4).

Refinements of Kooi’s and Finsler-Hadwiger inequality
As applications of Theorem 1 we obtain refinements of Kooi's and the

Finsler-Hadwiger inequality. Garfunkel-Bankoff inequality (4) is equivalent
to the well-known Kooi's inequality [3, 4, 5]

s2 ≤
R (4R + r)2

2 (2R − r)
, (5)

and they are both equivalent to [6]

a2 + b2 + c2 ≥ 4� 3 +
R − 2r

R
+ (a − b)2 + (b − c)2 + (c − a)2 . (6)
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Kooi's inequality has important applications in triangle geometry; for
example, its variant is used in the proof of the inequality [7]

2r ≤ ILA + ILB + ILC ≤ R
which bounds the sum of the distances of the incentre from the inarc centres
of the triangle [8]. The astute reader may have noticed that the inequality (2)
in the proof of Theorem 1

s2 ≤
R (4R + r)2 − r2 (R − 2r)

2 (2R − r)
is a refinement of Kooi's inequality (5). This refinement is better than the
refinement given in [6]

s2 ≤
R (4R + r)2

2 (2R − r)
−

r2 (R − 2r)
4R

,

since obviously

R (4R + r)2 − r2 (R − 2r)
2 (2R − r)

≤
R (4R + r)2

2 (2R − r)
−

r2 (R − 2r)
4R

.

It is interesting to note that (by Euler's inequality ) the inequality (6)
is a sharpening of the famous Finsler-Hadwiger inequality [9, 10, 11]

R ≥ 2r

a2 + b2 + c2 ≥ 4� 3 + (a − b)2 + (b − c)2 + (c − a)2 .
So it is natural to ask if the sharpening of the Garfunkel-Bankoff inequality
(1) has some similar form which is a sharpening of inequality (6).

Indeed, by the well-known identity ,
we have

ab + bc + ca = s2 + r (4R + r)

a2 + b2 + c2 − [(a − b)2 + (b − c)2 + (c − a)2] = 4r (4R + r) .
Hence (2) is equivalent to the following refinement of the Finsler-Hadwiger
inequality

a2 + b2 + c2 ≥ 4� 3 +
R − 2r

R
+

r2(R − 2r)
Rs2

+ (a − b)2 + (b − c)2 + (c − a)2 ,

which is an improvement of (6).
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108.35 Analogues of the 12 pentagons theorem for other
families of polyhedra

A well-known result in the theory of buckyballs is the “12 pentagons”
theorem. This states that if a convex polyhedron consists entirely of
pentagonal and hexagonal faces where three meet at each vertex, then there
are necessarily exactly 12 pentagons (with no such restriction on the number
of hexagons). The truncated icosahedron comprising 12 pentagons and 20
hexagons gives the structure of buckminsterfullerene, , but less
symmetrical closed higher fullerenes such as ,  have also
been found; here, the subscripts in  and  specify the number of
vertices of the polyhedron.

C60
C2n 35 ≤ n ≤ 45

C60 C2n

The aim of this short Note is to point out analogues for the 12 pentagons
theorem for two other families of polyhedra. Suppose that a polyhedron
consists of  regular -sided polygonal faces and  regular -sided faces,
where  and three faces meet at each vertex. Then, if , ,  denote
the number of faces, vertices and edges, we have

A a B b
a ≠ b F V E

A + B = F and   Aa + Bb = 2E = 3V (meaning that  V is always even).
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