Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T18:13:02.830Z Has data issue: false hasContentIssue false

Generalized Blob Algebras and Alcove Geometry

Published online by Cambridge University Press:  01 February 2010

Paul P. Martin
Affiliation:
Mathematics Department, City University, Northampton Square, London EC1V [email protected]
David Woodcock
Affiliation:
Mathematics Department, City University, Northampton Square, London EC1V 0HB

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A sequence of finite-dimensional quotients of affine Hecke algebras is studied. Each element of the sequence is constructed so as to have a weight space labelling scheme for Specht⁄standard modules. As in the weight space formalism of algebraic Lie theory, there is an action of an affine reflection group on this weight space that fixes the set of labelling weights. A linkage principle is proved in each case. Further, it is shown that the simplest non-trivial example may essentially be identified with the blob algebra (a physically motivated quasihereditary algebra whose representation theory is very well understood by Lie-theory-like methods). An extended role is hence proposed for Soergel's tilting algorithm, away from its algebraic Lie theory underpinning, in determining the simple content of standard modules for these algebras. This role is explicitly verified in the blob algebra case. A tensor space representation of the blob algebra is constructed, as a candidate for a full tilting module (subsequently proven to be so in a paper by Martin and Ryom-Hansen), further evidencing the extended utility of Lie-theoretic methods. Possible generalisations of this representation to other elements of the sequence are discussed.

Type
Research Article
Copyright
Copyright © London Mathematical Society 2003

References

1Ariki, S., ‘On the decomposition numbers of the Hecke algebra of G(m, 1, n)’, J. Math. Kyoto Univ. 36 (1996) 789808.Google Scholar
2Ariki, S. and Koike, K., A Hecke algebra of (Z/r Z) ≀ Sn and construction of its irreducible representations’, Adv. Math. (1994) 216243.CrossRefGoogle Scholar
3Ariki, S., Terasoma, T. and Yamada, H., ‘Schur-Weyl reciprocity for the Hecke algebra of (Z⁄r Z) ≀ Sn\ J. Algebra 178 (1995) 374390.CrossRefGoogle Scholar
4Baxter, R.J., Exactly solved models in statistical mechanics (Academic Press, New York, 1982).Google Scholar
5Baxter, R.J., Kelland, S.B. and Wu, F.Y., ‘Equivalence of the Potts model or Whitney polynomial with an ice-type model’, J. Phys. A 9 (1976) 397–06.CrossRefGoogle Scholar
6Behrend, R. and Pearce, P.A., ‘Boundary weights for Temperley-Lieb and dilute Temperley-Lieb models’, Int. J. Mod. Phys. B 11 (1997) 28332847.CrossRefGoogle Scholar
7Benson, D.J., Representations and cohomology I (Cambridge University Press, 1995).Google Scholar
8Birman, J.S., Braids, links and mapping class groups, Ann. Math. Stud. 82 (Princeton University Press, Princeton, NJ, 1975).CrossRefGoogle Scholar
9Bourbaki, N., Groupes at algebres de Lie, vols 4–6 (Masson, 1981).Google Scholar
10Broué, M. and Malle, G., ‘Zyklotomische heckealgebren’, Astérisque 212 (1993) 119189.Google Scholar
11Cherednik, I., ‘A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras’, Invent. Math. 106 (1991) 411431.CrossRefGoogle Scholar
12Cline, E., Parshall, B. and Scott, L., ‘Finite dimensional algebras and highest weight categories’, J. Reine Angew. Math. 391 (1988) 8599.Google Scholar
13Cline, E., Parshall, B. and Scott, L., ‘Generic and q–rational representation theory’, Publ. Res. Inst. Math. Sci. 35 (1999) 3190.CrossRefGoogle Scholar
14Cohn, P.M., Algebra, vol. 2 (Wiley, New York, 1982).Google Scholar
15Cox, A.G., Graham, J.J. and Martin, P.P., ‘The blob algebra in positive characteristic’, City University Preprint, 2001; J. Algebra 266 (2003) 584635.CrossRefGoogle Scholar
16Cox, A.G., Martin, P.P. and Ryom-Hansen, S., ‘Virtual algebraic Lie theory II’, in preparation.Google Scholar
17Date, E., Jimbo, M., Kuniba, A., Miwa, T. and Okado, M., ‘Exactly solvable SOS models II: proof of the star-triangle relation and combinatorial identities’, Adv. Stud. Pure Math. 16 (1988) 17.CrossRefGoogle Scholar
18Deguchi, T., ‘Braid group representations and link polynomials derived from gener alized SU(n) vertex models’, J. Phys. Soc. Japan 58(1989) 3441.CrossRefGoogle Scholar
19Dieck, T. Tom, ‘Symmetrische brucken und knotentheorie zu den Dynkin-diagrammen vom type B’, J. Reine Angew. Math. 451 (1994) 7188.Google Scholar
20Dipper, R., James, G. and Mathas, A., ‘The (Q, q) Schur algebra’, Proc. Lond. Math. Soc. 77 (1998) 327361.CrossRefGoogle Scholar
21Dlab, V. and Ringel, C.M., ‘A construction for quasi-hereditary algebras’, Compositio Math. 70 (1989) 155’175.Google Scholar
22Donkin, S., ‘On tilting modules for algebraic groups’, Math. Z. 212 (1993) 3960.CrossRefGoogle Scholar
23Donkin, S., The q-Schur algebra, London Math. Soc. Lecture Note Ser. 253 (Cambridge University Press, 1998).CrossRefGoogle Scholar
24Fulton, W.and Harris, J., Representation theory (Springer, 1991).Google Scholar
25Garsia, A.M. and McLarnan, T.J., ‘Relations between Young's natural and the Kazhdan–Lusztig representations of sn’, Adv. Math. 69 (1988) 3292.CrossRefGoogle Scholar
26Goodman, R. and Wallach, N.R., Representations and invariants of the classical groups (Cambridge University Press, 1998).Google Scholar
27Graham, J.J. and Lehrer, G.I., ‘The representation theory of affine Temperley-Lieb algebras’, Enseign. Math. 44 (1998) 173218.Google Scholar
28Graham, J.J. and Lehrer, G.I., ‘Diagram algebras, Hecke algebras and decomposition numbers at roots of unity’, Preprint, 2003.CrossRefGoogle Scholar
29Green, J.A., Polynomial representations of GLn (Springer, Berlin, 1980).Google Scholar
30Green, R.M., ‘Tabular algebras and their asymptotic versions’, J. Algebra (2001), to appear.Google Scholar
31Grojnowski, I., ‘Affine ŝlp controls the modular representation theory of the symmetric group and related Hecke algebras’, math.RT⁄9907129, 1999.Google Scholar
32Hamermesh, M., Group theory (Pergamon, Oxford, 1962).Google Scholar
33Hoefsmit, P.N., ‘Representations of Hecke algebras of finite groups with BN pairs of classical type’, Ph.D. thesis, University of British Columbia, 1974.Google Scholar
34Humphreys, J.E., Reflection groups and Coxeter groups (Cambridge University Press, 1990).CrossRefGoogle Scholar
35James, G.D. and Kerber, A., The representation theory of the symmetric group (Addison-Wesley, London, 1981).Google Scholar
36Jantzen, J.C., Representations of algebraic groups (Academic Press, 1987).Google Scholar
37Jimbo, M., ‘A q–difference analogue of U(g) and the Yang-Baxter equation’, Lett. Math. Phys. 10 (1985) 6369.CrossRefGoogle Scholar
38Jones, V.F.R., ‘A quotient of the affine Hecke algebra in the Brauer algebra’, Enseign. Math. 40 (1994) 313344.Google Scholar
39Joseph, A., Quantum groups and their primitive ideals (Springer, 1995).CrossRefGoogle Scholar
40Kashiwara, M., Miwa, T. and Stern, E., ‘Decomposition of q–deformed Fock spaces’, q-alg⁄9508006, 1995.CrossRefGoogle Scholar
41Kazhdan, D. and Lusztig, G., ‘Representations of Coxeter groups and Hecke algebras’, Invent. Math. 53 (1979) 165184.CrossRefGoogle Scholar
42Lambropoulou, S.S.F., ‘Solid torus links and Hecke algebras of B type’, Proceedings of the Quantum Topology (World Scientific, Singapore, 1994) 225.Google Scholar
43Lascoux, A., Leclerc, B. and Thibon, J.-Y, ‘Hecke algebras at roots of unity and crystal bases of quantum affine algebras’, Commun. Math. Phys. 181(1996) 205263.CrossRefGoogle Scholar
44Lusztig, G., ‘Affine Hecke algebras and their graded version’, J. Amer. Math. Soc. 2 (1989) 599685.CrossRefGoogle Scholar
45MacDonald, I., Symmetric functions and Hall polynomials (Oxford University Press, 1979).Google Scholar
46Magnus, W., Karras, A. and Solitar, S., Combinatorial group theory (Wiley, 1966).Google Scholar
47Martin, P.P., ‘Analytic properties of the partition function for statistical mechanical models’, J. Phys. A 19 (1986) 32673277.CrossRefGoogle Scholar
48Martin, P.P., Block spin transformations in the operator formulation of two-dimensional Potts models’, J. Phys. A 22 (1989) 3991–005.CrossRefGoogle Scholar
49Martin, P.P., ‘String-like lattice models and Hecke algebras’, J. Phys. A 22 (1989) 31033112.CrossRefGoogle Scholar
50Martin, P.P., Potts models and related problems in statistical mechanics (World Scientific, Singapore, 1991).CrossRefGoogle Scholar
51Martin, P.P., ‘A faithful tensor space representation for the blob algebra’, Preprint, 2002.Google Scholar
52Martin, P.P. and Levy, D., ‘Hecke algebra solutions to the reflection equations’, J. Phys. A 27 (1994) L521–L526.Google Scholar
53Martin, P.P. and Hansen, S. Ryom-, ‘Virtual algebraic Lie theory: tilting modules and Ringel duals for blob algebras’, Proc. London Math. Soc., to appear; Math. RT⁄0210063.Google Scholar
54Martin, P.P. and Saleur, H.,‘On an algebraic approach to higher dimensional statistical mechanics’, Comm. Math. Phys. 158 (1993) 155190.CrossRefGoogle Scholar
55Martin, P.P. and Saleur, H., ‘The blob algebra and the periodic Temperley-Lieb algebra’, Lett. Math. Phys. 30 (1994) 189206.CrossRefGoogle Scholar
56Martin, P.P. and Woodcock, D., ‘On quantum spin-chain spectra and the structure of Hecke algebras and q-groups at roots of unity’, J. Phys. A 31 (1998) 1013110154.CrossRefGoogle Scholar
57Martin, P.P. and Woodcock, D., ‘On the structure of the blob algebra’, J. Algebra 225 (2000) 957988.CrossRefGoogle Scholar
58Martin, P.P., Woodcock, D. and Levy, D., ‘A diagrammatic approach to Hecke algebras of the reflection equation’, J. Phys. A 33 (2000) 12651296.CrossRefGoogle Scholar
59Mathas, A., ‘Canonical bases and the decomposition matrices of Ariki-Koike algebras’, Preprint, 1996.CrossRefGoogle Scholar
60Pasquier, V. and Saleur, H., ‘Common structures between finite systems and conformal field theories through quantum groups’, Nucl. Phys. B 330 (1990) 523.CrossRefGoogle Scholar
61Ringel, C.M., ‘The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences’, Math. Zeit. 208 (1991) 209225.CrossRefGoogle Scholar
62Rogawski, J.D., ‘On modules over the Hecke algebra of a p-adic group’, Invent. Math. 79 (1985) 443–65.CrossRefGoogle Scholar
63Sakamoto, S. and Shoji, T., ‘Schur-Weyl reciprocity for Ariki-Koike algebras’, J. Algebra 221 (1999) 293’314.CrossRefGoogle Scholar
64Soergel, W., ‘Kazhdan-Lusztig polynomials and a combinatoric for tilting modules’, Representation Theory 1 (1997) 83114.CrossRefGoogle Scholar
65Soergel, W., ‘Charakterformeln für Kipp-Moduln über Kac-Moody-Algebren’, Representation Theory 1 (1997) 115132.CrossRefGoogle Scholar
66Stanley, R.P., Enumerative combinatorics (Cambridge University Press, 1997).CrossRefGoogle Scholar
67Stanton, D. and White, D., Constructive combinatorics, Undergrad. Texts in Math. (Springer, New York, 1986).CrossRefGoogle Scholar
68Temperley, H.N.V. and Lieb, E.H., ‘Relations between percolation and colouring problems and other graph theoretical problems associated with regular planar lattices: some exact results for the percolation problem’, Proc. Royal Soc. A 322(1971) 251280.Google Scholar
69Vershik, A.M. and Okunkov, A.Y., ‘An inductive method of expounding the representation theory of symmetric groups’, Russian Math. Surveys 51 (1996) 12371239.CrossRefGoogle Scholar