Cluster-driven inertial confinement fusion (ICF) is analyzed. A cluster is defined as a charged supermolecule with a charge of one (or of the order 1) and with a very high mass number A, so that Z/A « 1. The energy deposition range is shown to be very small (a few micrometers) for projectiles with a few tens of kev/a.m.u. A significant momentum transfer is therefore possible in its slowing down as it passes through matter. In this case, a high hydrodynamic efficiency seems evident. Three relevant models for cluster beam-target interactions are discussed: (1) the rocket model, where the ablation pressure (Pa) is much larger than the cluster beam direct pressure (II); (2) the hammer model, where Pa « II (in this case, two possibilities are discussed—an impact interaction between the beam and the target, and an impact interaction between one cluster and its absorption volume); (3) an intermediate model, where Pa ~II (in this regime, the hydrodynamic efficiency is maximum). Preliminary simulations were performed and the general features of the models were confirmed. Most relevant for ICF, it was found that approximately 75% of the beam energy is converted into X rays, so that the indirect drive is promising in this context.