Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T01:24:44.416Z Has data issue: false hasContentIssue false

Trends in stimulated Brillouin scattering and optical phase conjugation

Published online by Cambridge University Press:  09 June 2008

M. Ostermeyer*
Affiliation:
University of Potsdam, Institute of Physics, Nonlinear Optics and Experimental Quantum Information Processing, Potsdam, Germany
H.J. Kong
Affiliation:
Department of Physics, KAIST, Daejeon, Korea
V.I. Kovalev
Affiliation:
Department of Physics, Heriot-Watt University, Edinburgh, United Kingdom P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
R.G. Harrison
Affiliation:
Department of Physics, Heriot-Watt University, Edinburgh, United Kingdom
A.A. Fotiadi
Affiliation:
Service d'Electromagnétisme et de Télécommunications, Faculté Polytechnique de Mons, Mons, Belgium Ioffe Physico-Technical Institute of RAS, St. Petersburg, Russia
P. Mégret
Affiliation:
Service d'Electromagnétisme et de Télécommunications, Faculté Polytechnique de Mons, Mons, Belgium
M. Kalal
Affiliation:
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
O. Slezak
Affiliation:
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
J.W. Yoon
Affiliation:
Department of Physics, KAIST, Daejeon, Korea
J.S. Shin
Affiliation:
Department of Physics, KAIST, Daejeon, Korea
D.H. Beak
Affiliation:
Department of Physics, KAIST, Daejeon, Korea
S.K. Lee
Affiliation:
Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, Korea
Z. Lü
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
S. Wang
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
D. Lin
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
J.C. Knight
Affiliation:
Centre for Photonics and Photonic Materials, University of Bath, Bath, United Kingdom
N.E. Kotova
Affiliation:
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
A. Sträßer
Affiliation:
University of Potsdam, Institute of Physics, Nonlinear Optics and Experimental Quantum Information Processing, Potsdam, Germany
A. Scheikh-Obeid
Affiliation:
University of Potsdam, Institute of Physics, Nonlinear Optics and Experimental Quantum Information Processing, Potsdam, Germany
T. Riesbeck
Affiliation:
Technische Universität Berlin, Institut für Optik und Atomare Physik, Berlin, Germany
S. Meister
Affiliation:
Technische Universität Berlin, Institut für Optik und Atomare Physik, Berlin, Germany
H.J. Eichler
Affiliation:
Technische Universität Berlin, Institut für Optik und Atomare Physik, Berlin, Germany
Y. Wang
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
W. He
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
H. Yoshida
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
H. Fujita
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
M. Nakatsuka
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
T. Hatae
Affiliation:
Japan Atomic Energy Agency, Naka-shi, Ibaraki, Japan
H. Park
Affiliation:
Quantum Optics Division, Korea Atomic Energy Research Institute, Yuseong, Daejeon, Korea
C. Lim
Affiliation:
Quantum Optics Division, Korea Atomic Energy Research Institute, Yuseong, Daejeon, Korea
T. Omatsu
Affiliation:
Department of Information and Image Sciences, Chiba University, Chiba, Japan PREST, Japan Science and Technology Agency, Saitama, Japan
K. Nawata
Affiliation:
Department of Information and Image Sciences, Chiba University, Chiba, Japan
N. Shiba
Affiliation:
Department of Information and Image Sciences, Chiba University, Chiba, Japan
O.L. Antipov
Affiliation:
Institute of Applied Physics of the Russian Academy of Science, Nizhny Novgorod, Russia
M.S. Kuznetsov
Affiliation:
Institute of Applied Physics of the Russian Academy of Science, Nizhny Novgorod, Russia
N.G. Zakharov
Affiliation:
Institute of Applied Physics of the Russian Academy of Science, Nizhny Novgorod, Russia
*
Address correspondence and reprint requests to: Martin Ostermeyer, University of Potsdam, Institute of Physics, Nonlinear Optics and Experimental Quantum Information Processing, Am Neuen Palais 10, 14469 Potsdam, Germany. E-mail: [email protected]

Abstract

An overview on current trends in stimulated Brillouin scattering and optical phase conjugation is given. This report is based on the results of the “Second International Workshop on stimulated Brillouin scattering and phase conjugation” held in Potsdam/Germany in September 2007. The properties of stimulated Brillouin scattering are presented for the compensation of phase distortions in combination with novel laser technology like ceramics materials but also for e.g., phase stabilization, beam combination, and slow light. Photorefractive nonlinear mirrors and resonant refractive index gratings are addressed as phase conjugating mirrors in addition.

Type
Invited Review Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agnesi, A., Carra, L., Pirzio, F., Reali, G., Tomaselli, A., Scarpa, D. & Vacchi, C. (2006 a). Amplification of a low-power picosecond Nd:YVO4 laser by a diode-laser side-pumped grazing-incidence slab amplifier. IEEE J. Quant. Electron 42, 772776.CrossRefGoogle Scholar
Agnesi, A., Carra, L., Pirzio, F., Scarpa, D., Tomaselli, A., Reali, G. & Vacchi, C. (2006 b). High-gain diode-pumped amplifier for generation of microjoule-level picosecond pulses. Opt. Express 14, 92449249.CrossRefGoogle ScholarPubMed
Amano, S. & Mochizuki, T. (2001). High average and high peak brightness slab laser. IEEE J. Quantum Electron 37, 296303.CrossRefGoogle Scholar
Antipov, O.L., Belyaev, S.I., Chausov, D.V. & Kuzhelev, A.S. (1998 a). Resonant two-wave mixing of optical beams by refractive index and gain gratings in inverted Nd:YAG. J. Opt. Soc. America B. 15, 22762281.CrossRefGoogle Scholar
Antipov, O.L., Belyaev, S.I., Kuzhelev, A.S. & Zinov'ev, A.P. (1998 b). Nd:YAG laser with cavity formed by population inversion gratings. Proc. SPIE 3267, 181190.CrossRefGoogle Scholar
Antipov, O.L., Bredikhin, D.V., Eremeykin, O.N., Kuznetsov, M.S., Savikin, A.P. & Vorob'ev, V.A. (2003). Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals. IEEE J. Quantum Electron 39, 910918.CrossRefGoogle Scholar
Antipov, O.L., Chausov, D.V. & Kuzhelev, A.S. (1999 a). Formation of the cavity in a self-starting high-average power Nd:YAG laser oscillator. Opt. Express 5, 286292.Google Scholar
Antipov, O.L., Chausov, D.V., Kuzhelev, A.S. & Zinov'ev, A.P. (1999 b). Dynamics of refractive index changes in a Nd:YAG laser crystal under Nd3+-ions excitation. J. Opt. Soc. America B. 16, 10721079.CrossRefGoogle Scholar
Antipov, O.L., Chausov, D.V., Kuzhelev, A.S., Vorob'ev, V.A. & Zinov'ev, A.P. (2001). 250-W average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings. IEEE J. Quantum Electron 37, 716724.Google Scholar
Antipov, O.L., Damzen, M.J., Eremeykin, O.N. & Minassian, A. (2004 a). Efficient continuous-wave generation in a self-organizing diode-pumped Nd:YVO4 laser with a reciprocal dynamic holographic cavity. Opt. Lett. 29, 23902392.Google Scholar
Antipov, O.L., Eremeykin, O.N., Ievlev, A.V. & Savikin, A.P. (2004 b) Diode-pumped Nd:YAG laser with reciprocal dynamic holographic cavity. Opt. Express 12, 43134319.Google Scholar
Antipov, O.L., Eremeykin, O.N., Savikin, A.P., Zakharov, N.G. & Zinoviev, A.P. (2006). Q-switch and mode-locking in diode-pumped solid-state lasers with dynamic holographic cavity. Conference on Solid-state and Fiber Coherent Light Sources. Pisa, Italy.Google Scholar
Antipov, O.L., Kuzhelev, A.S., Vorob'yov, V.A. & Zinov'ev, A.P. (1998 c). Pulse repetitive Nd:YAG laser with distributed feedback by self-induced population grating. Opt. Commun 152, 313318.Google Scholar
Antipov, O.L., Lobanov, S.N., Nekorkin, S.M. & Zvonkov, B.N. (2004 c). Self-organizing diode laser with cavity formed by dynamic gratings. Proc. SPIE 5452, 183191.CrossRefGoogle Scholar
Auerbech, J.M., Holmes, N.C., Hunt, J.T. & Linford, G.J. (1979). Closure phenomena in pinholes irradiated by Nd laser pulses. Appl. Opt. 18, 24952499.CrossRefGoogle Scholar
Azuma, Y., Shibata, N., Horiguchi, T. & Tateda, M. (1988). Wavelength dependence of Brillouin-gain spectra for single-mode fibres. Electron. Lett. 24, 250252.Google Scholar
Baldwin, G.D. & Riedel, E.P. (1967). Measurements of dynamic optical distortion in Nd-Doped glass laser rods. J. Appl. Phys. 38, 27262738.CrossRefGoogle Scholar
Basov, N.G., Efimkov, V.F., Zubarev, I.G., Kotov, A.V., Mikhailov, S.I. & Smirnov, M.G. (1979). Influence of certain radiation parameters on wavefront reversal of a pump wave in a Brillouin mirror. Sov. J. Quantum Electron 9, 455458.CrossRefGoogle Scholar
Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127141.CrossRefGoogle Scholar
Bel'dyugin, I.M., Efimkov, V. F., Mikhailov, S. I. & Zubarev, I. G. (2005). Amplification of weak stokes signals in the transient regime of stimulated Brillouin scattering. J. Russian Laser Research 26, 112.CrossRefGoogle Scholar
Bernard, J.E. & Alcock, A. J. (1993). High-efficiency diode-pumped Nd:YVO4 slab laser. Opt. Lett. 18, 968970.CrossRefGoogle Scholar
Borisov, B.N., Borodulina, O.S., Kruzhilin, Yu.I., Maslakov, S.Yu. & Melnikov, A.V. (1983). Pulse-periodic neodymium laser with wavefront reversal in a stimulated-Brillouin-scattering mirror and with frequency doubling. Sov. J. Quantum Electron. 13, 14111412.CrossRefGoogle Scholar
Bowers, M.W. & Boyd, R.W. (1998). Phase locking via Brillouin-enhanced four-wave-mixing phase conjugation. IEEE J. Quantum Electron 34, 634644.CrossRefGoogle Scholar
Boyd, R.W. & Gauthier, D. J. (2002). “Slow” and “fast” light. Prog. Opt. 43, 497530.Google Scholar
Boyd, R.W., Rzazewski, K. & Narum, P. (1990). Noise initiation of stimulated Brillouin scattering. Phys. Rev. A 42, 55145521.Google Scholar
Brignon, A. & Huignard, J.-P. (2003). Phase Conjugate Laser Optics New York: Wiley-Interscience.Google Scholar
Brignon, A., Huignard, J.-P. & Sillard, P. (1998). Gain-grating analysis of a self-starting self-pumped phase-conjugate Nd: YAG loop resonator. IEEE J. Quantum Electron 34, 465472.Google Scholar
Brown, D.C. (1998). Nonlinear thermal distortion in YAG rod amplifiers. IEEE J. Quantum Electron 34, 23832392.Google Scholar
Bruesselbach, H. & Sumida, D. (1996). 69-W-average-power Yb:YAG laser. Opt. Lett. 21, 480483.CrossRefGoogle ScholarPubMed
Chiao, R.Y., Townes, C.H. & Stoicheff, B.P. (1964). Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett. 12, 592595.Google Scholar
Chu, R.J., Kanefsky, M. & Falk, J. (1992). Numerical study of transient stimulated Brillouin scattering. J. Appl. Phys. 71, 46534658.Google Scholar
Clarkson, W.A., Felgate, N.S. & Hanna, D.C. (1999). Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers. Opt. Lett. 24, 820822.CrossRefGoogle ScholarPubMed
Cotter, D. (1982). Stimulated Brillouin scattering in optical fibers. J. Opt. Commun. 4, 1019.Google Scholar
Couderc, V., Louradour, F. & Barthelemy, A. (1999). 2.8 ps pulses from a mode-locked diode pumped Nd:YVO4 laser using quadratic polarization switching. Opt. Commun. 166, 103111.Google Scholar
Crofts, G.J., Damzen, M.J. & Minassian, A. (1997). Self-starting Ti:sapphire holographic laser oscillator. Opt. Lett. 22, 697699.Google Scholar
Dahan, D. & Eisenstein, G. (2005). Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametrical amplifier: A route to all optical buffering. Opt. Exp. 13, 62346249.CrossRefGoogle Scholar
Damzen, M.J., Trew, M., Rosas, E. & Crofts, G.J. (2001). Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 64% conversion efficiency. Opt. Commun. 196, 237241.Google Scholar
Damzen, M.J., Green, R.P.M. & Syed, K.S. (1995). Self-adaptive solid-state oscillator formed by dynamic gain-gratings holograms. Opt. Lett. 20, 17041706.Google Scholar
Dane, C.B. & Hackel, L.A. (2004). Phase Conjugate Laser Optics (Brignon, A. and Huignard, J.-P., eds.). Chap. 5. New York: John Wiley & Sons.Google Scholar
Dane, C.B., Neuman, W.A. & Hackel, L.A. (1994 a). High-energy SBS compression. IEEE Quantum Electron QE-30, 19071915.Google Scholar
Dane, C.B., Zapata, L.E., Neuman, W.A., Norton, M.A. & Hackel, L.A. (1994 b). Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction. IEEE Quantum Electron. QE-31, 148162.Google Scholar
Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, I., Fell, B., Frackiewicz, A.J., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2005). Vulcan petawatt: Design, operation and interactions at 5X1020 Wcm−2. Laser Part. Beams 23, 8793.CrossRefGoogle Scholar
Dascalu, T., Taira, T. & Pavel, N. (2002). 100-W quasi-continuous-wave diode radially pumped microchip composite Yb:YAG laser. Opt. Lett. 27, 17921799.Google Scholar
Ding, Y., , Z. & He, W. (2002 a). The influence of the ratio of seed to pump energy on Brillouin amplification. Acta Phys. Sin. 51, 2767.CrossRefGoogle Scholar
Ding, Y., , Z. & He, W. (2002 b). Study of beam combination by stimulated Brillouin scattering. High Power Laser Part. Beams 14, 353.Google Scholar
Du, K., Li, D., Zhang, H., Shi, P., Wei, X. & Diart, R. (2003). Electro-optically Q-switched Nd:YVO4 slab laser with a high repetition rate and a short pulse width. Opt. Lett. 28, 8789.Google Scholar
Eichler, H.J., Haase, A., Kumde, J. & Mehl, O. (1997 a). Fiber phase conjugator as reflecting mirror in a MOPA arrangement. Proc. SPIE 2986, 4654.Google Scholar
Eichler, H.J., Kunde, J. & Liu, B. (1997 b). Quarz fiber phase conjugators with high fidelity and reflectivity. Opt. Commun. 139, 327334.Google Scholar
Eichler, H.J., Mocofanescu, A., Riesbeck, T., Risse, E. & Bedau, D. (2002). Stimulated Brillouin scattering in multimode fibers for optical phase conjugation. Opt. Commun. 208, 427431.CrossRefGoogle Scholar
Eimerl, D., Chernyak, V.M., Pergament, M.I., Smirnov, R.V. & Sokolov, V.I. (1995). Phase conjugation in short pulse megajoule class lasers. Proc. SPIE 2633, 3646.CrossRefGoogle Scholar
Endo, A. (2004). High power laser plasma EUV light source for lithography. Proc. SPIE 5448, 704711.Google Scholar
Fabelinskii, I.L. (1968). Molecular Scattering of Light. New York: Plenum Press.Google Scholar
Fan, T.Y. (2005). Laser beam combining for high-power high-radiance sources. IEEE J. Sel. Topics Quantum Electron 11, 567577.Google Scholar
Farrell, D. & Damzen, M.J. (2007). High power scaling of a passively mode locked laser oscillator in a bounce geometry. Opt. Exp. 15, 47814786.Google Scholar
Fedosejevs, R. & Offenberger, A.A. (1985). Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier. IEEE J. Quantum Electron 21, 15581562.Google Scholar
Fotiadi, A.A., Kiyan, R., Deparis, O., Mégret, P. & Blondel, M. (2002). Statistical properties of stimulated Brillouin scattering in single mode optical fibers above threshold. Opt. Lett. 27, 8385.CrossRefGoogle ScholarPubMed
Gaeta, A.L. (1990). Stochastic and deterministic fluctuations in stimulated Brillouin scattering. Ph.D Thesis, Rochester, NY: University of Rochester.Google Scholar
Gaeta, A.L. & Boyd, R.W. (1991). Stochastic dynamics of stimulated Brillouin scattering in an optical fiber. Phys. Rev. A. 44, 32053209.Google Scholar
Gao, W., , Z., He, W., Zhu, C. & Dong, Y. (2007). Research on selective optical amplification of Brillouin spectrum of weak scattering signals in water. Acta Phys. sin. 56, 2693.Google Scholar
Garrett, C.G.B. & Mccumber, D.E. (1970). Propagation of a Gaussian light pulse through an anomalous dispersion medium. Phys. Rev. A. 1, 305313.CrossRefGoogle Scholar
Giesen, A., Hügel, H., Voss, A., Wittig, K., Brauch, U. & Opower, H. (1994). Scalable concept for diode-pumped high-power solid-state-lasers. Appl. Phys. B. 58, 365372.Google Scholar
Glick, Y. & Sternklar, S. (1995). 1010 amplification and phase conjugation with high efficiency achieved by overcoming noise limitations in Brillouin two-beam coupling. J. Opt. Soc. Am. B. 12, 10741082.Google Scholar
Harrison, R.G., Kovalev, V.I., Lu, W. & Yu, D. (1999). SBS self-phase conjugation of CW Nd:YAG laser radiation in an optical fibre. Opt. Commun. 163, 208211.Google Scholar
Hasi, W.L.J., Lu, Z.W., Li, Q. & He, W.M. (2007). Research on the enhancement of power-load of two-cell SBS system by choosing different media or mixture medium. Laser Part. Beams 25, 207210.CrossRefGoogle Scholar
Hatae, T., Naito, O., Nakatsuka, M. & Yoshida, H. (2006 b). Applications of phase conjugation mirror to Thomson scattering diagnostics. Rev. Sci. Instr. 77, 10E508–1–6.Google Scholar
Hatae, T., Nakatsuka, M. &. Yoshida, H. (2004). Improvement of Thomson scattering diagnostics using stimulated-Brillouin-scattering-based phase conjugated mirror. J. Plasma Fusion Res. 80, 870882.Google Scholar
Hatae, T., Nakatsuka, M., Yoshida, H., Ebisawa, K., Kusama, Y., Sato, K., Kasunuma, A., Kubomura, H. & Shinobu, K. (2006 a). Progress in development of edge. Thomson scattering system for ITER. Trans. Fusion Sci. Techn. 51, 5861.Google Scholar
Hau, L.V., Harris, S.E., Dutton, Z. & Behroozi, C.H. (1999). Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 397, 594596.CrossRefGoogle Scholar
Heiman, D., Hamilton, D.S. & Hellwarth, R.W. (1979). Brillouin scattering measurements in optical glasses. Phys. Rev. 19, 65836592.Google Scholar
Herraez, M.G., Song, K.Y. & Thevenaz, L. (2006). Arbitrary bandwidth Brillouin slow light in optical fibers. Opt. Exp. 14, 13951400.Google Scholar
Heuer, A. & Menzel, R. (2003). Self pumped phase conjugation by stimulated Brillouin scattering. In Phase Conjugate Laser Optics. New York: Wiley-Interscience.Google Scholar
Hodgson, N. & Weber, H. (1997 a). Optical Resonators. Chapter 22.1. New York: Springer.Google Scholar
Hodgson, N. & Weber, H. (1997 b). Optical Resonators. New York: Springer.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hon, D.T. (1980). Pulse compression by stimulated Brillouin scattering. Opt. Lett. 5, 516518.Google Scholar
Honea, E.C., Beach, R.J., Mitchell, S.C., Skidmore, J.A., Emanuel, M.A., Sutton, S.B., Payne, S.A., Avizonis, P.V., Monroe, R.S. & Harris, D.G. (2000). High-power dual-rod Yb:YAG laser. Opt. Lett. 25, 805807.CrossRefGoogle ScholarPubMed
Jackel, S., Moshe, I. & Lavi, R. (2003). Comparison of adaptive optics and phase-conjugate mirrors for correction of aberrations in double-pass amplifiers. Appl. Opt. 42, 983989.Google Scholar
Jeong, Y., Sahu, J.K. & Payne, D.N. (2004). Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt. Exp. 12, 60886092.Google Scholar
Jianren, L., Prabhu, M., Jianqiu, X., Ueda, K., Yagi, H., Yanagitani, T. & Kaminski, A.A. (2000). High efficient 2% Nd:yttrium aluminum garnet ceramic laser. Appl. Phys. Lett. 78, 37073709.Google Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.Google Scholar
Kalal, M., Kong, H.J. & Alexander, N.B. (2007 a). Consideration of SBS PCM technique for self-aiming of laser fusion drivers on IFE targets-proposal and feasibility study. Third International Conference on the Frontiers of Plasma Physics and Technology, Bangkok, Thailand.Google Scholar
Kalal, M., Kong, H.J. & Alexander, N.B., Martinkova, M. & Slezak, O. (2007 b). SBS PCM technique and its possible role in achieving IFE objectives IAEA. Technical Meeting on Physics and Technology of IFE Targets and Chambers. Kobe, Japan.Google Scholar
Kappe, P., Strasser, A. & Ostermeyer, M. (2007). Investigation of the impact of SBS-parameters and loss modulation on the mode locking of an SBS-laser oscillator. Laser Part. Beams 25, 107116.Google Scholar
Kiriyama, H., Yamakawa, K., Nagai, T., Kageyama, N., Miyajima, H., Kan, H., Yoshida, H. & Nakatsuka, M. (2003). 360 W average power operation with a single-stage diode-pumped Nd:YAG amplifier at a 1 kilohertz-repetition-rate. Opt. Lett. 28, 16711673.Google Scholar
Kleinbauer, J.,  Knappe, R. & Wallenstein, R. (2004). 13-W picosecond Nd:GdVO4 regenerative amplifier with 200-kHz. Appl. Phys. B. 81, 163166.Google Scholar
Kmetik, V., Fiedorowics, H., Andreev, A.A., Witte, K.J., Daido, H., Fujita, H., Nakatsuka, M. & Yamanaka, T. (1998). Reliable stimulated Brillouin scattering compression of Nd:YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz. Appl. Opt. 37, 70857090.Google Scholar
Knight, J.C., Arriaga, J., Birks, T.A., Ortigosa-Blanch, A., Wadsworth, W.J. & St Russel, P.. (2000). Anomalous dispersion in photonic crystal fibre. IEEE Photo. Techn. Lett. 12, 807809.Google Scholar
Kobyakov, A., Darmanyan, S.A. & Chowdhury, D.Q. (2006). Exact analytical treatment of noise initiation of SBS in the presence of loss. Opt. Commun 260, 4649.Google Scholar
Koechner, W. (1999 a). Nd: Lasers. Solid-State Laser Engineering. New York: Springer.CrossRefGoogle Scholar
Koechner, W. (1999 b). Cylindrical geometry. Solid-State Laser Engineering. New York: Springer.Google Scholar
Koechner, W. (2006). Harmonic generation. Solid-State Laser Engineering. Berlin: Springer-Verlag.Google Scholar
Kong, H.J., Lee, S.K. & Lee, D.W. (2005 a). Beam combined laser fusion driver with high power and high repetition rate using stimulated Brillouin scattering phase conjugation mirrors and self-phase-locking. Laser Part. Beams 23, 5559.Google Scholar
Kong, H.J., Lee, S.K. & Lee, D.W. (2005 b). Highly repetitive high energy/power beam combination laser: IFE laser driver using independent phase control of stimulated Brillouin scattering phase conjugate mirrors and pre-pulse technique. Laser Part. Beams 23, 107111.Google Scholar
Kong, H.J., Beak, D.H., Lee, S.K. & Lee, D.W. (2005 c). Waveform preservation of the backscattered stimulated Brillouin scattering wave by using a prepulse injection. Opt. Lett. 30, 34013403.CrossRefGoogle ScholarPubMed
Kong, H.J., Lee, J.Y., Shin, Y.S., Byun, J.O., Park, H.S. & Kim, H. (1997). Beam recombination characteristics in array laser amplification using stimulated Brillouin scattering phase conjugation. Opt. Rev. 4, 277283.Google Scholar
Kong, H.J., Lee, S.K., Lee, D.W. & Guo, H. (2005 d). Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation. Appl. Phys. Lett. 86, 051111.Google Scholar
Kong, H.J., Yoon, J.W., Beak, D.H., Shin, J.S., Lee, S.K. & Lee, D.W. (2007). Laser fusion driver using stimulated Brillouin scattering phase conjugate mirrors by a self-density modulation. Laser Part. Beams 25, 225238.Google Scholar
Kong, H.J., Yoon, J.W., Shin, J.S. & Beak, D.H. (2008). Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors. Appl. Phys. Lett. 92, 021102.Google Scholar
Kong, H.J., Yoon, J.W., Shin, J.S., Beak, D.H. & Lee, B.J. (2006). Long term stabilization of the beam combination laser with a phase controlled stimulated Brillouin scattering phase conjugation mirrors for the laser fusion driver. Laser Part. Beams 24, 519523.CrossRefGoogle Scholar
Kovalev, V.I. & Harrison, R.G. (2000). Observation of inhomogeneous spectral broadening of stimulated Brillouin scattering in an optical fiber. Phys. Rev. Lett. 85, 18791882.Google Scholar
Kovalev, V.I. & Harrison, R.G. (2002). Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber. Opt. Lett. 27, 20222024.CrossRefGoogle ScholarPubMed
Kovalev, V.I. & Harrison, R.G. (2004). Spectral broadening of continuous-wave monochromatic pump radiation caused by stimulated Brillouin scattering in optical fiber. Opt. Lett. 29, 379381.CrossRefGoogle ScholarPubMed
Kovalev, V.I. & Harrison, R.G. (2005). Temporally stable continuous-wave phase conjugation by stimulated Brillouin scattering in optical fiber with cavity feedback. Opt. Lett. 30, 13751377.Google Scholar
Kovalev, V.I. (2002). Stimulated Brillouin scattering in the midinfrared region of the spectrum. J. Russian Laser Res. 23, 1330.Google Scholar
Kracht, D., Freiburg, D., Wilhelm, R., Frede, M. & Fallnich, C. (2006). Core-doped Ceramic Nd:YAG Laser. Opt. Exp. 14, 2690–2594.Google Scholar
Kuzin, E.A., Petrov, M.P. & Fotiadi, A.A. (1994). Phase conjugation by SMBS in optical fibers. In Optical Phase Conjugation (Gower, M. and Proch, D., eds.). New York: Springer-Verlag.Google Scholar
Landau, L.D. & Lifshitz, E.M. (1960). Electrodynamics of Continuous Madia. Reading, MA: Addison-Wesley.Google Scholar
Larionov, M., Butze, F., Nickel, D. & Giesen, A. (2007). High-repetition-rate regenerative thin-disk amplifier with 116 µJ pulse energy and 250 fs pulse duration. Opt. Lett. 32, 494496.Google Scholar
Le Floch, S. & Cambon, P. (2003 a). Study of Brillouin gain spectrum in standard single-mode fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars). Opt. Commun. 219, 395.Google Scholar
Le Floch, S. & Cambon, P. (2003 b). Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equations in standard single-mode optical fibers. J. Opt. Soc. Am. A. 20, 11321137.Google Scholar
Lee, S.K., Kong, H.J. & Nakatsuka, M. (2005). Great improvement of phase controlling of the entirely independent stimulated Brillouin scattering phase conjugate mirrors by balancing the pump energies. Appl. Phys. Lett. 87, 161109.Google Scholar
Li, D., Ma, Z., Haas, R., Schell, A., Simon, J., Diart, R., Shi, P., Hu, P., Lossen, P. & Du, K. (2007). Diode-pumped efficient slab laser with two Nd:YLF crystals and second-harmonic generation by slab LBO. Opt. Lett. 31, 158165.Google Scholar
Liem, A., Limpert, J., Zellmer, H. & Tünnermann, A. (2003). 100-W single-frequency master-oscillator fiber power amplifier. Opt. Lett. 28, 15371539.CrossRefGoogle ScholarPubMed
Limpert, J., Schreiber, T., Nolte, S., Zellmer, H., Tünnermann, A., Iliew, R., Lederer, F., Broeng, J., Vienne, G., Petersson, A. & Jakobsen, C. (2003). High-power air-clad large-mode-area photonic crystal fiber laser. Opt. Exp. 11, 818823.Google Scholar
Lombard, L., Brignon, A., Huignard, J.P., Lallier, E., Lucas-Leclin, G., Georges, P., Pauliat, G. & Roosen, G. (2004). Diffraction-limited polarized emission from a multimode ytterbium fiber amplifier after a nonlinear beam converter. Opt. Lett. 29, 989991.Google Scholar
Loree, T.R., Watkins, D.E., Johnson, T.M., Kurnit, N.A. & Fisher, R.A. (1987). Phase locking two beams by means of seeded Brillouin scattering. Opt. Lett. 12, 178180.Google Scholar
Lu, J., Parabhu, M., Song, J., Li, C., Xu, J., Ueda, K., Kaminskii, A.A., Yagi, H. & Yanagitani, T. (2000). Optical properties and highly efficient laser oscillation of Nd:YAG ceramics. Appl. Phys. B. 71, 469472.Google Scholar
Lu, J., Prabhu, M., Ueda, K., Yagi, H., Yanagitani, T., Kudryashov, A. & Kaminski, A.A. (2001). Potential of Ceramic YAG Lasers. Laser Phys. 78, 10531057.Google Scholar
Lu, Z., Dong, Y. & Li, Q. (2007). Slow light in multi-line Brillouin gain spectrum. Opt. Exp. 15, 18711877.Google Scholar
Lucianetti, A., Weber, R., Hodel, W., Weber, H.P., Papashvili, A., Konyushkin, V.A. & Basiev, T.T. (1999). Beam-quality improvement of a passively Q-switched Nd:YAG laser with a core-doped rod. Appl. Opt. 38, 17771783.Google Scholar
Maier, M., Rother, W. & Kaiser, W. (1967). Time-resolved measurements of stimulated Brillouin scattering. Appl. Phys. Lett. 10, 8082.Google Scholar
Mao, J.S., Zhao, J.Y., Li, Y.D., Xie, A.G., Fang, Z.S., Sannikov, V. & Gorshkov, A. (2001). HT-7 multipoint Nd laser Thomson scattering apparatus. Plasma Sci. Techn. 3, 691702.Google Scholar
Mao, X.P., Tkach, R.W., Chraplyvy, A.R., Jopson, R.M. & Derosier, R.M. (1992). Stimulated Brillouin threshold dependence on fiber type and uniformity. IEEE Photon. Tech. Lett. 4, 6669.Google Scholar
Margerie, J., Moncorge, R. & Nagtegaele, P. (2006). Spectroscopic investigation of the refractive index variations in the Nd:YAG laser crystal. Phys. Rev. B 74, 235108235118.Google Scholar
Meister, S., Riesbeck, T. & Eichler, H.J. (2007). Glass fibers for stimulated Brillouin scattering and phase conjugation. Laser Part. Beams 25, 1521.Google Scholar
Meister, S., Theiss, C., Scharfenorth, C. & Eichler, H.J. (2006). Power transmission limits of different glass fibers with antireflective coating: Reliability of optical fiber components, devices, systems, and networks III. Proc. SPIE 6193, 215225.Google Scholar
Mitra, A., Yoshida, H., Fujita, F. & Nakatsuka, M. (2006). Sub nanosecondt pulse generation by stimulated Brillouin scattering using FC-75 in an integrated set-up with laser energy up to 1.5 J. Jpn. J. Appl. Phys. 45, 16071611.Google Scholar
Moon, J.A. & Schaafsma, D.T. (2000). Chalcogenide fibers: An overview of selected applications. Fiber Int. Opt. 19, 201212.Google Scholar
Moyer, R.H., Valley, M. & Cimolino, M.C. (1988). Beam combination through stimulated Brillouin scattering. J. Opt. Soc. Am. B. 5, 24732489.Google Scholar
Nawata, K., Ojima, Y., Okida, M., Ogawa, T. & Omatsu, T. (2007 a). Power scaling of a pico-second Nd:YVO4 master-oscillator power amplifier with a phase-conjugate mirror. Opt. Exp. 14, 1065710662.Google Scholar
Nawata, K., Okida, M., Furuki, K. & Omatsu, T. (2007 b). MW ps pulse generation at sub-MHz repetition rates from a phase conjugate Nd:YVO4 bounce amplifier. Opt. Exp. 15, 91239128.Google Scholar
Neshev, I.D., Velchev, W.A., Majewski, W., Hogervorst, W. & Ubachs, W. (1999). SBS pulse compression to 200 ps in a compact single-cell setup. Appl. Phys. B. 68, 671675.Google Scholar
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Goette, S., Haefner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H.J., Kuehl, T., Kunzer, S., Merz, T., Onkels, E., Perry, D.M., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschwitz, A., Thiel, R., Ursescu, D., Wiewior, P., Wittrock, U. & Zielbauer, B. (2005). Status of PHELIX laser and first experiments. Laser and Part. Beams 23, 385389.Google Scholar
Nobile, A., Nikroo, A., Cook, R.C., Cooley, J.C., Alexander, D.J., Hackenberg, R.E., Necker, C.T., Dickerson, R.M., Kilkenny, J.L., Bernat, T.P., Chen, K.C., Xu, H., Stephens, R.B., Huang, H., Haan, S.W., Forsman, A.C., Atherton, L.J., Letts, S.A., Bono, M.J. & Wilson, D.C. (2006). Status of the development of ignition capsules in the US effort to achieve thermonuclear ignition on the national ignition facility. Laser Part. Beams 24, 567578.CrossRefGoogle Scholar
Nosach, O.Y., Popovichev, V.I., Ragul'skii, V.V. & Faizullov, F.S. (1972). Cancellation of phase distortions in an amplifying medium with a “brillouin mirror.” Sov. Phys. JETP Lett. 16, 435438.Google Scholar
Ojima, Y., Nawata, K. & Omatsu, T. (2006). Over 10-watt pico-second diffraction-limited output from a Nd:YVO4 slab amplifier with a phase conjugate mirror. Opt. Exp. 13, 89938998.Google Scholar
Okawachi, Y., Bigelow, M.S., Sharping, J.E., Zu, Z., Schweinsberg, A., Gauthier, D.J., Boyd, R.W. & Gaeta, A.L. (2005). Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 94, 153902.Google Scholar
Omatsu, T., Katoh, A., Okada, K., Hatano, S., Hasegawa, A., Tateda, M. & Ogura, I. (1998). Investigation of photorefractive phase conjugate feedback on the lasing spectrum of a broad-stripe laser diode. Opt. Commun. 146, 167172.Google Scholar
Oraevsky, A.N. (1988). Quantum fluctuations and formation of coherency in laser. J. Opt. Soc. of Am B. 5, 933945.Google Scholar
Ostermeyer, M. & Brandenburg, I. (2005). Simulation of the extraction of near diffraction limited Gaussian beams from side pumped core doped ceramic Nd:YAG and conventional laser rods. Opt. Exp. 13, 1014510156.Google Scholar
Ostermeyer, M. & Menzel, R. (1999). 50 Watt average output power with 1.2DL beam quality from a single rod Nd:YALO laser with phase-conjugating SBS mirror. Opt. Commun. 171, 8591.Google Scholar
Ostermeyer, M., Heuer, A. & Menzel, R. (1998). 27-W average output power with 1.2*DL beam quality from a single rod Nd:YAG laser with phase conjugating SBS mirror. J. Quantm Electron 34, 372377.Google Scholar
Ostermeyer, M., Kappe, P., Menzel, R. & Wulfmeyer, V. (2005). Diode pumped Nd:YAG MOPA with high pulse energy, excellent beam quality and frequency stabilized master oscillator as a basis for a next generation lidar system. Appl. Opt. 44, 582590.CrossRefGoogle ScholarPubMed
Park, H., Lim, C., Yoshida, H. & Nakatsuka, M. (2006). Measurement of stimulated Brillouin scattering characteristics in the heavy fluorocarbon (FC) liquids and the perfluoropolyether(HT) liquids. Jpn. J. Appl. Phys. 45, 50735075.Google Scholar
Pepper, D.M. & Yariv, A. (1980). Compensation for phase distortions in nonlinear media by phase conjugation. Opt. Lett. 5, 5960.Google Scholar
Pilipetsky, N.F., Shkunov, V.V. & Zel'dovich, B.Ya. (1985). Principles of Phase Conjugation. Berlin: Springer.Google Scholar
Powell, R.C. (1998). Physics of Solid-State Laser Materials. New York, Berlin, Heidelberg: Springer.Google Scholar
Report of the First Research Coordination Meeting, IAEA HQ. (2006). Pathways to Energy from Inertial Fusion: An integrated approach. Vienna, Austria.Google Scholar
Ridley, K.D. & Scott, A.M. (1996). Phase-locked phase conjugation using a Brillouin loop scheme to eliminate phase fluctuations. J. Opt. Soc. Am. B. 13, 900907.Google Scholar
Riesbeck, T. & Eichler, H.J. (2007). A high power laser system at 540 nm with beam coupling by second harmonic generation. Opt. Comm. 275, 429432.Google Scholar
Riesbeck, T., Risse, E. & Eichler, H.J. (2001). Pulsed solid-state laser system with fiber phase conjugation and 315W average output power. Appl. Phys. B. 73, 847849.Google Scholar
Rockwell, D.A. & Giuliano, C.R. (1986). Coherent coupling of laser gain media using phase conjugation. Opt. Lett. 11, 147149.Google Scholar
Rockwell, D.A. (1988). A review of phase-conjugate solid-state lasers. IEEE J. Quantum Electron 24, 11241140.Google Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser and Part. Beams 23, 503512.Google Scholar
Schiemann, S., Ubachs, W. & Hogervorst, W. (1997). Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup. IEEE J. Quantum Electron 33, 358366.Google Scholar
Scott, A.M. & Watkins, A.M. (1990). Gain and noise characteristics of a Brillouin amplifier and their dependence on the spatial structure of the pump beam. J. Opt. Soc. Am. B. 7, 929935.CrossRefGoogle Scholar
Sharping, J.E., Okawachi, Y. & Gaeta, A.L. (2005). Wide bandwidth slow light using a Raman fiber amplifier. Opt. Exp. 13, 60926098.Google Scholar
Shen, Y.R. (1984). The Principles of Nonlinear Optics. New York: John Wiley & Sons.Google Scholar
Shibata, N., Okamoto, K. & Azuma, Y. (1989). Longitudinal acoustic modes and Brillouin-gain spectra for GeO2-doped-core single-mode fibers. J. Opt. Soc. Am. B. 6, 11671174.Google Scholar
Shibata, N., Waarts, R.G. & Braun, R.P. (1987). Brillouin gain spectra for single-mode fibers having pure-silica GeO2-doped, and P2O5-doped cores. Opt. Lett. 12, 269271.Google Scholar
Shiraki, K., Ohashi, M. & Tateda, M. (1995). Suppression of stimulated Brillouin scattering in a fiber by changing the core radius. Electron. Lett. 31, 668669.Google Scholar
Siegman, A.E. (1986). Laser. Mill Valley: University Science Books.Google Scholar
Smith, R.G. (1972). Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Appl. Opt. 11, 24892494.Google Scholar
Song, K.Y. & Hotate, K. (2007). 25 GHz bandwidth Brillouin slow light in optical fibers. Opt. Lett. 32, 217219.Google Scholar
Song, K.Y., Herraez, M.G. & Thevenaz, L. (2005). Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt. Exp. 13, 8288.Google Scholar
Sternklar, S., Jackel, S., Chomsky, D. & Zigler, A. (1990). Coherent beam and image amplification by Brillouin two-beam coupling in CS2. Opt. Lett. 15, 616618.Google Scholar
Sternklar, S., Weiss, S., Segev, M. & Fischer, B. (1986). Beam coupling and locking of lasers using photorefractive four-wave mixing. Opt. Lett. 11, 528530.Google Scholar
Stewen, C., Contag, K., Larionov, M., Giesen, A. & Hugel, H. (2000). A 1-kW CW thin disc laser. IEEE J. Sel. Topics Quan. Electron 6, 650657.Google Scholar
Sträßer, A. & OSTERMEYER, M. (2006). Improving the brightness of side pumped power amplifieres by using core doped ceramic rods. Opt. Exp. 14, 66876693.Google Scholar
Sträßer, A., Waltinger, T. & Ostermeyer, M. (2007). Injection seeded frequency stabilized Nd:YAG ring oscillator following a Pound-Drever-Hall scheme. Appl. Opt. 46, 83588363.Google Scholar
Sumida, D.S., Betin, A.A. & Bruesselbach, H. (1999). Diode-pumped Yb:YAG catches up with Nd:YAG. Laser Focus World 35, 6366.Google Scholar
Sumida, D.S., Jones, D.C. & Rockwell, D.A. (1994). An 8.2J phase-conjugate solid-state laser coherently combining eight parallel amplifiers. IEEE J. Quan Electron 30, 26172626.Google Scholar
Tang, C.L. (1966). Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process. J. Appl. Phys. 37, 29452955.Google Scholar
Tkach, R.W., Chraplyvy, A.R. & Derosier, R.M. (1986). Spontaneous Brillouin scattering for single-mode optical-fibre characterisation. Electron. Lett. 22, 10111013.Google Scholar
Tsubakimoto, K., Yoshida, H., Fujita, H. & Nakatsuka, M. (2006). Development of high-peak and high-average-power LD pumped solid-state laser system for EUV generation. Rev. Laser Eng. 34, 628632.CrossRefGoogle Scholar
Tsun, T.O., Wada, A., Sakai, T. & Yamauchi, R. (1992). Novel method using white spectral probe signals to measure Brillouin gain spectra of pure silica core fibres. Electron. Lett. 28, 247249.Google Scholar
Tucker, A.W., Birnbaum, M., Fincher, C.L. & Erler, J.W. (1977). Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4. J. Appl. Phys. 48, 49074911.Google Scholar
Vahala, K., Kyuma, K. & Yariv, A. (1986). Narrow line width, single frequency semiconductor laser with a phase conjugate external cavity mirror. Appl. Phys. Lett. 49, 15631565.Google Scholar
Wang, S., Lin, D., , Z., Zhao, X., Wang, C. & Wang, X. (2003). Numerical simulation and scheme design for laser beam combination of stimulated Brillouin scattering. High Power Laser Part. Beams 15, 877.Google Scholar
Wang, S., , Z., Lin, D., Ding, L. & Jiang, D. (2007). Investigation of serial coherent laser beam combination Based on Brillouin amplification. Laser Part. Beams 25, 7983.Google Scholar
Wang, Y.L., Lu, Z.W., He, W.M. & Zhang, Y. (2007). Investigation on a high energy stimulated Brillouin scattering phase conjugating mirror. Acta Phys. Sin. 56, 883888.Google Scholar
Wilhelm, R. (2001). Numerical modeling of solid state lasers. talk at laser working group session. http://www.ligo.caltech.edu/docs/G/G010362–00.pdfGoogle Scholar
Yamanaka, C. (2000). Super high-power laser systems and their application. Opt. Quan. Electron 32, 263297.Google Scholar
Yamanaka, C., Kato, Y., Izawa, Y., Yoshida, K., Yamanaka, T., Sasaki, T., Nakatsuka, M., Mochizuki, T., Kuroda, J. & Nakai, S. (1981). Nd-doped phosphate glass laser systems for laser-fusion research. IEEE J. Quantum Electron 17, 16391649.Google Scholar
Yariv, A. (1979). Quantum Electronics. New York: J. Wiley & Sons.Google Scholar
Yeh, P. (1993). Introduction to Photorefractive Nonlinear Optics. New York: J. Wiley & Sons.Google Scholar
Yeniay, A., Delavaux, J.-M. & Toulouse, J. (2002). Spontaneous and stimulated rillouin scattering gain spectra in optical fibers. J. Light. Tech. 20, 14251432.Google Scholar
Yoshida, H., Fujita, H., Nakatsuka, M. & Fujinoki, A. (2004 a). Temporal compression by stimulated-Brillouin-scattering of Q-switched pulse with fused quartz glass. Jpn. J. Appl. Phys. 43, 11031105.Google Scholar
Yoshida, H., Fujita, H., Nakatsuka, M. & Yoshida, K. (1997 a). Stimulated Brillouin scattering phase-conjugated wave reflection from fused-silica glass without laser induced damage. Opt. Eng. 36, 25572562.Google Scholar
Yoshida, H., Fujita, H., Nakatsuka, M. & Yoshida, K. (1999 a). High resistant phase-conjugated stimulated Brillouin scattering mirror using fused-silica glass for Nd:YAG laser system. Jpn. J. Appl. Phys. 38, L521L523.Google Scholar
Yoshida, H., Fujita, H., Nakatsuka, M. & Yoshida, K. (1999 b). Generation of SBS phase-conjugated wave using optical glasses. Rev. Laser Eng. 27, 495500.Google Scholar
Yoshida, H., Fujita, H., Nakatsuka, M. & Yoshida, K. (2000). High-power phase-conjugating mirror based on stimulated Brillouin scattering in solids. Proc. SPIE 3889, 812817.Google Scholar
Yoshida, H., Fujita, H., Nakatsuka, M., Fujinoki, A. & Yoshida, K. (2003 a). Fused-quartz glass with low optical quality as a high damage-resistant stimulated Brillouin-scattering phase-conjugation mirror. Opt. Commun. 222, 257267.Google Scholar
Yoshida, H., Fujita, H., Nakatsuka, M., Ueda, T. & Fujinoki, A. (2007). Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength. Laser Part. Beams 25, 481488.Google Scholar
Yoshida, H., Kmetik, V., Fujita, H., Nakatsuka, M., Yamanaka, T. & Yoshida, K. (1997 b). Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror. Appl. Opt. 36, 37393744.Google Scholar
Yoshida, H., Nakatsuka, M., Hatae, T., Kitamura, S. & Kashiwabara, T. (2002). YAG laser performance improved by stimulated Brillouin scattering phase conjugation mirror in Thomson scattering diagnostics at JT-60. Jpn. J. Appl. Phys. 42, 439442.Google Scholar
Yoshida, H., Nakatsuka, M., Hatae, T., Kitamura, S. & Kashiwabara, T. (2003 b). YAG laser performance improved by stimulated Brillouin scattering phase conjugation mirror in Thomson Scattering Diagnostics at JT-60. Jpn. J. Appl. Phys. 42, 439442.Google Scholar
Yoshida, H., Nakatsuka, M., Hatae, T., Kitamura, S., Sakuma, T. & Hamano, T. (2004 b). Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics. Jpn. J. Appl. Phys. 43, L10381040.Google Scholar
Yoshizawa, N. & Imai, T. (1993). Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling. J. Lightwave Techn. 11, 15181522.Google Scholar
Yoshizawa, N., Horiguchi, T. & Kurashima, T. (1991). Proposal for stimulated Brillouin scattering suppression by fibre cabling. Electron. Lett. 27, 11001101.CrossRefGoogle Scholar
Zel'dovich, B. YA., Pilipetsky, N.F. & Shkunov, V.V. (1985). Principles of Phase Conjugation. Berlin: Springer-Verlag.Google Scholar
Zel'dovich, B.Y., Popovichev, V.I., Ragulskii, V.V. & Failzullov, F.S. (1972). Connection between the wave fronts of the reflected and exciting light in stimulated Mandel'shtam-Brillouin scattering. Sov. Phys. JETP Lett. 15, 109112.Google Scholar
Zu, Z., Dawes, A.M.C., Gauthier, D.J., Zang, L. & Willner, A.E. (2007). Broadband SBS slow light in an optical fiber. J. Lightwave Techn. 25, 201206.Google Scholar
Zubarev, I.G., Mironov, A.B. & Mikhailov, S.I. (1980). Single-mode pulse-periodic oscillator-amplifier system with wavefront reversal. Sov. J. Quantum Electron 10, 11791181.Google Scholar
Zvorykin, V.D., Didenko, N.V., Ionin, A.A., Kholin, I.V., Konyashchenko, A.V., Krokhin, O.N., Levchenko, A.O., Mavritskii, A.O., Mesyats, G.A., Molchanov, A.G., Rogulev, M.A., Seleznev, L.V., Sinitsyn, D.V., Tenyakov, S.Y., Ustinovskii, N.N. & Zayarnyi, D.A. (2007). GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Laser Part. Beams 25, 435451.Google Scholar