Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T05:16:54.854Z Has data issue: false hasContentIssue false

Thin shell aerogel fabrication for FIREX-I targets using high viscosity (phloroglucinol carboxylic acid)/formaldehyde solution

Published online by Cambridge University Press:  22 July 2008

H. Yang
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
K. Nagai*
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
M. Nakai
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
T. Norimatsu
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
*
Address correspondence and reprint requests to: Keiji Nagai, Institute of Laser Engineering, Osaka University, Yamada Oka 2–6, Suita, Osaka, Japan. E-mail: [email protected]

Abstract

Capsules with a thin aerogel shell were prepared by the OO/W/OI emulsion process. (Phloroglucinol carboxylic acid)/formaldehyde (PF) was used as the water phase (W) solution to form the shell of the capsule. PF is a linear polymer prepared from phloroglucinol carboxylic acid. The viscosity of the PF solution can reach a high level of 9×10−5 m2/s without gelation while resorcinol/formaldehyde (RF) gelates at ~3–4×10−5 m2/s. Using the viscous PF solution, capsule with a 17 µm gel shell was fabricated. This thickness satisfies the specification of the first phase of Fast Ignition Realization Experiment (FIREX-I) at Osaka University. When PF gel was extracted to remove the organic solvent, shrinkage of 9% occurred. The final density of the PF aerogel was 145 mg/cm3. Both the shell thickness and density can satisfy the specification of FIREX-I. The pore size of the PF aerogel was less than 100 nm while that of RF was 200–500 nm. The SEM showed that PF had particle-like foam structure while RF had fibrous-like foam structure.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azechi, H. & The Firex Project (2006). Present status of the FIREX programme for demonstration of ignition and burn. Plasma Phys. Contr. Fusion 48, B267B275.CrossRefGoogle Scholar
Azechi, H., Jitsuno, T., Kanabe, T., Katayama, M., Mima, K., Miyanaka, N., Nakai, M., Nakai, S., Nakaishi, H., Nakatsuka, M., Nishiguchi, A., Norrays, R.A., Setsuhara, Y., Takagi, M., Yamanaka, M. & Yamanaka, C. (1991). High-density compression experiments at ILE, Osaka. Laser Part. Beams 9, 193207.CrossRefGoogle Scholar
Borisenko, N.G., Khalenkov, A.M., Kmetik, V., Limpouch, J., Merkuliev, Y.A. & Pimenov, V.G. (2007). Plastic aerogel targets and optical transparency of undercritical microhetero- geneous plasma. Fusion Sci. Technol. 51, 655664.CrossRefGoogle Scholar
Fernandez, J.C., Hegelich, B.M., Cobble, J.A., Flippo, K.A., Letzring, S.A., Johnson, R.P., Gautier, D.C., Shimada, T., Kyrala, G.A., Wang, Y.Q., Wetteland, C.J. & Schreiber, J. (2005). Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas. Laser Part. Beams 23, 267273.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Ito, F., Nagai, K., Nakai, M. & Norimatsu, T. (2005). Resorcinol-formaldehyde foam balls via gelation of emulsion using phase-transfer catalysts. Macromol. Chem. Phys. 206, 21712176.CrossRefGoogle Scholar
Ito, F., Nagai, K., Nakai, M., Norimatsu, T., Nikitenko, A., Tolokonnikov, S., Koresheva, E., Fujimura, T., Azechi, H. & Mima, K. (2006 a). Low-density-plastic foam capsule of resorcinol/formalin and (phloroglucinol-carboxylic acid)/formalin resins for fast-ignition realization experiment (FIREX) in laser fusion research. Jpn. J. Appl. Phys. B 45, L335L338.CrossRefGoogle Scholar
Ito, F., Nagai, K., Nakai, M. & Norimatsu, T. (2006 b). Optimization of gelation to prepare hollow foam shell of resorcinol-formalin using a phase-transfer catalyst. Fusion Sci. Technol. 49, 663668.CrossRefGoogle Scholar
Iwamoto, A., Maekawa, R., Mito, T., Sakagami, H., Motojima, O., Nakai, M., Nagai, K., Fujimura, T., Norimatsu, T., Azechi, H. & Mima, K. (2007). Preliminary results of fuel layering on the cryogenic target for FIREX project. Fusion Sci. Technol. 51, 753757.CrossRefGoogle Scholar
Jonzaki, T., Sakagami, H., Nagatomo, H. & Mima, K. (2007). Holistic simulation for FIREX project with FI3. Laser Part. Beams 25, 621629.CrossRefGoogle Scholar
Khalenkov, A.M., Borisenko, N.G., Kondrashov, V.N., Merkuliev, Y.A., Limpouch, J. & Pimenov, V.G. (2006). Experience of micro-heterogeneous energy transport in plasma near critical density. Laser Part. Beams 24, 283290.CrossRefGoogle Scholar
Kitagawa, Y., Sentoku, Y., Akamatsu, S., Mori, M., Tohyama, Y., Kodama, R., Tanaka, K.A., Fujita, H., Yoshida, H., Matsuo, S., Jitsuno, T., Kawasaki, T., Sakabe, S., Nishimura, H., Izawa, Y., Mima, K. & Yamanaka, T. (2002). Progress of fast ignitor studies and petawatt laser construction at Osaka University. Phys. Plasmas 9, 22022207.CrossRefGoogle Scholar
Kodama, R., Azechi, H., Fujita, H., Habara, H., Izawa, Y., Jitsuno, T., Jozaki, T., Kitagawa, Y., Krushelnick, K., Matsuoka, T., Mima, K., Miyanaga, N., Nagai, K., Nagatomo, H., Nakai, M., Nishimura, H., Norimatsu, T., Norreys, P.A., Shigemori, K., Shiraga, H., Sunahara, A., Tanaka, K.A., Tampo, M., Toyama, Y., Tsubakimoto, K., Yamanaka, T. & Zepf, M. (2004). Fast plasma heating in a cone-attached geometry-towards fusion ignition. Nucl. Fusion 44, S276S283.CrossRefGoogle Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as faster towards laser fusion ignition. Nature 412, 798802.CrossRefGoogle Scholar
Kodama, R., Shiraga, H., Shigemori, K., Toyama, Y., Fujioka, S., Azechi, H., Fujita, H., Habara, H., Hall, T., Izawa, Y., Jitsuno, T., Kitagawa, Y., Krushelnick, K.M., Lancaster, K.L., Mima, K., Nagai, K., Nakai, M., Nishimura, H., Norimatsu, T., Norreys, P.A., Sakabe, S., Tanaka, K.A., Youssef, A., Zepf, M. & Yamanaka, T. (2002). Fast heating scalable to laser fusion ignition. Nature 418, 933934.CrossRefGoogle ScholarPubMed
Lambert, S.M., Overturf, G.E., Wilemski, G., Letts, S.A., Schroen, D. & Cook, R.C. (1997). Fabrication of low-density foam shells from resorcinol-formaldehyde aerogel. J. Appl. Polym. Sci. 65, 21112122.3.0.CO;2-K>CrossRefGoogle Scholar
Mima, K., Tanaka, K.A., Kodama, R., Johzaki, T., Nagatomo, H., Shiraga, H., Miyanaga, N., Murakami, M., Azechi, H., Nakai, M., Norimatsu, T., Nagai, K., Taguchi, T. & Sakagami, H. (2007). Recent results and future prospects of laser fusion research at ILE, Osaka. Eur. J. Phys. D 44, 259264.CrossRefGoogle Scholar
Nagai, K., Azechi, H., Ito, F., Iwamoto, A., Izawa, Y., Johzaki, T., Kodama, R., Mima, K., Mito, T., Nakai, M., Nemoto, N., Norimatsu, T., Ono, Y., Shigemori, K., Shiraga, H. & Tanaka, K.A. (2005). Foam materials for cryogenic targets of fast ignition realization experiment (FIREX). Nucl. Fusion 45, 12771283.CrossRefGoogle Scholar
Nagai, K., Nakajima, M., Norimatsu, T., Izawa, Y. & Yamanaka, T. (2000). Solvent removal during curing process of highly spheric and monodispersed-sized polystyrene capsules from density-matched emulsions composed of water and benzene/1, 2-dichloroethane. J. Polym. Sci. A Polym. Chem. 38, 34123418.3.0.CO;2-9>CrossRefGoogle Scholar
Nagai, K., Norimatsu, T. & Izawa, Y. (2004 a). In Encyclopedia of Nanoscience and Nanotechnology. (Nalwa, E.H., ed.), Vol. 10, pp. 407419. Stevenson Ranch, CA: American Scientific Publishers.Google Scholar
Nagai, K., Norimatsu, T. & Izawa, Y. (2004 b). Control of micro- and nano-structure in ultralow-density hydrocarbon foam. Fusion Sci. Technol. 45, 7983.CrossRefGoogle Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses. Laser Part. Beams 24, 58.CrossRefGoogle Scholar
Nemoto, N., Nagai, K., Ono, Y., Tanji, K., Tanji, T., Nakai, M. & Norimatsu, T. (2006). Polystyrene based foam materials for cryogenic targets of fast ignition realization experiment (FIREX). Fusion Sci. Technol. 49, 695700.CrossRefGoogle Scholar
Nikroo, A., Czechowicz, D., Paguio, R., Greenwood, A.L. & Takagi, M. (2004). Fabrication and properties of overcoated resorcinol-formaldehyde shells for OMEGA experiments. Fusion Sci. Technol. 45, 8489.CrossRefGoogle Scholar
Nobile, A., Nikroo, A., Cook, R.C., Cooley, J.C., Alexander, D.J., Hackenberg, R.E., Necker, C.T., Dickerson, R.M., Kilkenny, J.L., Bernat, T.P., Chen, K.C., Xu, H., Stephens, R.B., Huang, H., Haan, S.W., Forsman, A.C., Atherton, L.J., Letts, S.A., Bono, M.J. & Wilson, D.C. (2006). Status of the development of ignition capsules in the US effort to achieve thermonuclear ignition on the national ignition facility. Laser Part. Beams 24, 567578.CrossRefGoogle Scholar
Norimatsu, T., Harding, D., Stephens, R., Nikroo, A., Petzoldt, R., Yoshida, H., Nagai, K. & Izawa, Y. (2006). Fabrication, injection, and tracking of fast ignition targets: status and future prospects. Fusion Sci. Technol. 49, 483499.CrossRefGoogle Scholar
Norimatsu, T., Nagai, K., Takeda, T., Mima, K. & Yamanaka, T. (2003). Update for the drag force on an injected pellet and target fabrication for inertial fusion. Fusion Sci. Technol. 43, 339345.CrossRefGoogle Scholar
Norimatsu, T., Takagi, M., Izawa, Y. & Mima, K. (1998). Fabrication of vacuole-free polystyrene over a wide diameter range using a W/O/W emulsion method. J. Moscow Phys. Soc. 8, 71.Google Scholar
Paguio, R.R., Takagi, M., Thi, M., Hund, J.F., Nikoo, A., Paguio, S., Luo, R., Greenwood, A.L., Acenas, O. & Chowdhury, S. (2007). Improving the wall uniformity of resorcinol formaldehyde foam shells by modifying emulsion components. Fusion Sci. Technol. 51, 682687.CrossRefGoogle Scholar
Pekala, R.W. (1989). Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 32213227.CrossRefGoogle Scholar
Ruben, G.C., Pekala, R.W., Tillotson, T.M. & Hrubesh, L.W. (1992). Imaging aerogels at the molecular level. J. Mater. Sci. 27, 43414349.CrossRefGoogle Scholar
Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Fast ignition integrated interconnecting code project for cone-guided targets. Laser Part. Beam 24, 191198.CrossRefGoogle Scholar
Streit, J. & Schroen, D. (2003). Development of divinylbenzene foam shells for use as inertial fusion energy reactor target. Fusion Sci. Technol. 43, 321326.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultra powerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Tanaka, K.A., Kodama, R., Kitagawa, Y., Kondo, K., Mima, K., Azechi, H., Chen, Z., Fujioka, S., Fujita, H., Johzaki, T., Lei, A., Matsuoka, T., Miyanaga, N., Nagai, K., Nagatomo, H., Nishimura, H., Norimatsu, T., Shigemori, K., Shiraga, H., Tanpo, M., Tohyama, Y., Yabuuchi, T., Zheng, J., Izawa, Y., Norreys, P.A., Stephens, R. & Hatchett, S. (2004). Progress and perspectives of fast ignition. Plasma Phys. Contr. Fusion 46, B41B49.CrossRefGoogle Scholar
Yamanaka, T. (1983). Kansei Kakuyuugou Kenkyuu Keikaku (Plan of Laser Fusion Research at ILE). Osaka, Japan: Osaka University: Institute of Laser Engineering.Google Scholar
Yamanaka, K., Nagai, K., Nemoto, N., Nomura, K., Shimoyama, T., Tanji, K., Tanji, T., Nakai, M. & Norimatsu, T. (2007). Foam structure of xerogel prepared via ring-opening reaction between epoxy groups attached on the side chain of polystyrene. Fusion Sci. Technol. 51, 665672.CrossRefGoogle Scholar
Yang, H., Han, Y.H., Zhao, X.W., Nagai, K. & Gu, Z.Z. (2006). Thermal responsive microlens arrays. Appl. Phys. Lett. 89, 1121-1-1121-1123.CrossRefGoogle Scholar