Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T16:14:06.555Z Has data issue: false hasContentIssue false

Planar shock waves in liquids produced by high-energy KrF laser: A technique for studying hydrodynamic instabilities

Published online by Cambridge University Press:  24 July 2008

V.D. Zvorykin*
Affiliation:
P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
L. Berthe
Affiliation:
Laboratoire pour l'Application des Lasers de Puissance, UPR 1576 CNRS, Arcueil CADEX, France
M. Boustie
Affiliation:
Laboratoire de Combustion et de Détonique, UPR 9028-CNRS, Université de Poitiers-ENSMA, Futuroscope CEDEX, France
A.O. Levchenko
Affiliation:
P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
N.N. Ustinovskii
Affiliation:
P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
*
Address correspondence and reprint request to: Vladimir D. Zvorykin, Russian Academy of Sciences, P.N. Lebedev Physical Institute, Leninsky pr. 53, 119991 Moscow, Russia. E-mail: [email protected]

Abstract

The paper is devoted to research and development of a novel experimental technique—liquid-filled laser-driven shock tube (LST) for modeling of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) hydrodynamic instabilities development at the contact surface of two immiscible liquids under shock wave (SW) passage. 100-J, 100-ns KrF laser facility GARPUN has been used to irradiate some opaque liquids. A homogenizing focusing system combined multi-element prism raster and a lens to provide non-uniformity less than a few percents across a square 7 × 7-mm spot, laser intensities being varied in the range of q = 0.004–2 GW/cm2. Surface plasma blow-off produced a planar SW, which propagated into the liquid. SW amplitudes as high as 0.8 GPa weakly damping with increasing thickness were measured in dibutyl-phthalate (DBP), which volumetrically absorbed ultraviolet (UV) laser light. Nonlinear absorption coefficients and laser breakdown thresholds were measured for pure water and UV optical materials intended to confine plasma. Test bench experiments were performed to produce standing acoustic waves as initial perturbations at the interface between two immiscible liquids.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aglitskiy, Y., Metzler, N., Karasik, M., Serlin, V., Velikovich, A.L., Obenschain, S.P., Mostovich, A.N., Schmitt, A.J. & Weaver, J. (2006). Perturbation evolution started by Richtmyer-Meshkov instability in planar laser targets. Phys. Plasmas 13, 080703/1–4.CrossRefGoogle Scholar
Anderholm, N.C. (1970). Laser-generated stress waves. Appl. Phys. Lett. 16, 113115.CrossRefGoogle Scholar
Bakaev, V.G., Batani, D., Krasnyuk, I.A., Lebo, I.G., Levchenko, A.O., Sychugov, G.V., Tishkin, V.F., Zayarnyi, D.A. & Zvorykin, V.D. (2005). Hydrodynamics of high-energy GARPUN KrF laser interaction with solid and thin-film targets in ambient air. J. Phys. D: Appl. Phys. 38, 20312044.CrossRefGoogle Scholar
Barker, L.M. & Hollenbach, R.E. (1972). Laser interferometer for measuring high velocities of any reflecting surfaces. J. Appl. Phys. 43, 46694675.CrossRefGoogle Scholar
Basov, N.G., Bakaev, V.G., Bogdanovskii, A.V., Vadkovskii, A.D., Grigor'yants, E.A., Zvorykin, V.D., Metreveli, G.E., Suchkov, A.F. & Sychugov, G.V. (1993). E-beam pumped “GARPUN” broadband KrF laser with ~1 GW pulsed lasing power. J. Sov. Laser Res. 14, 326359.CrossRefGoogle Scholar
Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127141.CrossRefGoogle Scholar
Bauer, F. (2003). PVDF shock compression sensors in shock wave physics. AIP Conf. Proc. 706, 11211124.CrossRefGoogle Scholar
Berthe, L., Fabbro, R., Peyre, P., Tollier, L. & Bartnicki, E. (1997). Shock waves from water-confined laser-generated plasma. J. Appl. Phys. 82, 28262832.CrossRefGoogle Scholar
Berthe, L., Fabbro, R., Peyre, P. & Bartnicki, E. (1999). Wavelength dependent of laser shock-wave generation in the water-confinement regime. J. Appl. Phys. 85, 75527555.CrossRefGoogle Scholar
Berthe, L., Sollier, A., Peyre, P., Fabbro, R. & Bartnicki, E. (2000). The generation of laser shock waves in a water-confinement regime with 50 ns and 150 ns XeCl excimer laser pulses. J. Phys. D: Appl. Phys. 33, 21422145.CrossRefGoogle Scholar
Boustie, M., Couturier, S., Romain, J.P., Zagouri, D. & Simonnet, H. (1996). Shock pressure and free surface velocity measurements in confined interaction: Response of new VF2/VF3 piezoelectric gauges. Laser Part. Beams 14, 171179.CrossRefGoogle Scholar
Castilla, R. & Redondo, J.M. (1993). Mixing front growth in RT and RM instabilities. In Proc. of the 4th Int. Workshop on the Physics of Compressible Turbulent Mixing. (Linden, P.F., Youngs, D.L. and Dalziel, S.B. (Eds.), pp. 1122. Cambridge, UK: Cambridge University Press.Google Scholar
Lopez Cela, J.J., Piriz, A.R., Serna Moreno, M.C. & Tahir, N.A. (2006). Numerical simulations of Rayleigh-Taylor instability in elastic solids. Laser Part. Beams 24, 427435.CrossRefGoogle Scholar
Danilychev, V.A. & Zvorykin, V.D. (1984). Experimental investigation of radiation-gas dynamic processes that develop under the action of high-power λ = 10.6 µm laser pulses on a solid in a gas. J. Sov. Laser Res. 5, 667715.CrossRefGoogle Scholar
Devaux, D., Fabbro, R., Tollier, L. & Bartnicki, E. (1993). Generation of shock waves by laser-induced plasma in confined geometry. J. Appl. Phys. 74, 22682273.CrossRefGoogle Scholar
Dragomir, A., McInerney, J.G., Nikogosyan, D.N. & Ruth, A. (2002). Two-photon absorption coefficients of several liquid at 264 nm. IEEE J. Quant. Electron. 38, 3136.CrossRefGoogle Scholar
Eliseev, E.N., Fadeeva, E.I., Zvorykin, V.D., Morozov, N.V., Sagitov, S.I. & Sergeev, P.B. (1996). Laser damage strength of optical materials and coatings for ArF and KrF excimer lasers. J. Optical Technology 63, 136143.Google Scholar
Fabbro, R., Fournier, J., Ballard, P., Devaux, D. & Virmont, J. (1990). Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 68, 775784.CrossRefGoogle Scholar
Farley, D.R., Peyser, T.A., Logory, L.M., Muray, S.D. & Burke, E.W. (1999). High Mach number mix instability experiments of an unstable density interface using a single-mode, nonlinear initial perturbation. Phys. Plasmas 6, 43044317.CrossRefGoogle Scholar
Gonzalez, M., Stehle, C., Audit, E., Busquet, M., Rus, B., Thais, F., Acef, O., Barroso, P., Bar-Shalom, A., Bauduin, D., Kozlova, M., Lery, T., Madouri, A., Mocek, T. & Polan, J. (2006). Astrophysical radiative shocks: From modeling to laboratory experiments. Laser Part. Beams 24, 535540.CrossRefGoogle Scholar
Graham, R.A. (1975). Piezoelectric current from shunted and shorted guard-ring quartz gauges. J. Appl. Phys. 46, 19011909.CrossRefGoogle Scholar
Hata, K., Watanabe, M. & Watanabe, S. (1990). Nonlinear processes in UV optical materials at 248 nm. Appl. Phys. B 50, 5559.CrossRefGoogle Scholar
Jacobs, J.W. & Sheely, J.M. (1996). Experimental study of incompressible Richtmyer-Meshkov instability. Phys. Fluids 8, 405415.CrossRefGoogle Scholar
Kilkenny, J.D., Glendinning, S.G., Haan, S.W., Hammel, B.A., Lindl, J.D., Munro, D., Remington, B.A., Weber, S.V., Knauer, J.P. & Verdon, S.V. (1994). A review of the ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to inertial confinement fusion. Phys. Plasmas 1, 13791389.CrossRefGoogle Scholar
Kilkenny, J.D., Alexander, N.B., Nikroo, A., Steinman, D.A., Nobile, A., Bernat, T., Cook, R., Letts, S., Takagi, M. & Harding, D. (2005). Laser targets compensate for limitations in inertial confinement fusion drivers. Laser Part. Beams 23, 475482.CrossRefGoogle Scholar
Krasnyuk, I.A. & Lebo, I.G. (2006). Comments on the article Hydrodynamics of high-energy GARPUN KrF laser interaction with solid and thin-film targets in ambient air. J. Phys. D: Appl. Phys. 39, 14621464.CrossRefGoogle Scholar
Lebo, I.G., Iskakov, A.B., Mikhailov, Yu.A., Rozanov, V.B., Starodub, A.N., Sklizkov, G.V., Tishkin, V.F. & Zvorykin, V.D. (2003). Numerical modeling of laser target experiments at “GARPUN” and “PICO” installation. SPIE 5228, 157163.Google Scholar
Lebo, I.G., Ilyasov, A.O., Iskakov, A.B., Jitkova, O.A., Mikhailov, Yu.A., Rozanov, V.B., Starodub, A.N., Sklizkov, G.V., Tishkin, V.F. & Zorykin, V.D. (2004). Numerical study of laser target experiments at Lebedev Physical Institute. In Proc. of Third International Conference on Inertial Fusion Sciences and Applications, pp. 10811085, September 7–12, 2003, Monterey, California, USA. American Nuclear Society, Inc.Google Scholar
Manheimer, W. & Colombant, D. (2007). Effects of viscosity in modeling laser fusion implosions. Laser Part. Beams 25, 541547.CrossRefGoogle Scholar
Meshkov, E.E. (1969). Instability of the interface of two gases accelerated by a shock wave. Izv. Akad. Sci. USSR Fluid Dynamics 4, 101104.CrossRefGoogle Scholar
Nikogosyan, D.N. & Angelov, D.A. (1981). Formation of free radicals in water under high-power UV irradiation. Chem. Phys. Lett. 77, 208210.CrossRefGoogle Scholar
Nobile, A., Nikroo, A., Cook, R.C., Cooley, J.C., Alexander, D.J., Hackenberg, R.E., Necker, C.T., Dickerson, R.M., Kilkenny, J.L., Bernat, T.P., Chen, K.C., Xu, H., Stephens, R.B., Huang, H., Haan, S.W., Forsman, A.C., Atherton, L.J., Letts, S.A., Bono, M.J. & Wilson, D.C. (2006). Status of the development of ignition capsules in the US effort to achieve thermonuclear ignition on the national ignition facility. Laser Part. Beams 24, 567578.CrossRefGoogle Scholar
Obara, T., Bourne, N.K. & Mebar, Y. (1995). The construction and calibration of an inexpensive PVDF stress gauge fr fast pressure measurements. Meas. Sci. Technol. 6, 345348.CrossRefGoogle Scholar
Peyre, P., Berthe, L., Fabbro, R. & Sollier, A. (2000). Experimental determination by PVDF and EMV techniques of shock amplitudes induced by 0.6–3 ns laser pulses in a confined regime with water. J. Phys. D: Appl. Phys. 33, 498503.CrossRefGoogle Scholar
Phipps, C.P. Jr., Turner, T.P., Harrison, R.F., York, G.W., Osborne, W.Z., Anderson, G.K., Corlis, X.F., Haynes, L.C., Steele, H.S., Spicochi, K.C. & King, T.R. (1988). Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers. J. Appl. Phys. 64, 10831096.CrossRefGoogle Scholar
Phipps, C.P. Jr., Harrison, R.F., Shimada, T., York, G.W., Turner, T.P., Corlis, X.F., Steele, H.S., Haynes, L.C. & King, T.R. (1990). Enhanced vacuum laser-impulse coupling by volume absorption at infrared wavelength. Laser Part. Beams 8, 281298.CrossRefGoogle Scholar
Piriz, A.R., Lopez Cela, J.J., Serna Moreno, M.C., Tahir, N.A. & Hoffmann, D.H.H. (2006 a). Thin plate effects in the Rayleigh-Taylor instability of elastic solids Laser. Part. Beams 24, 275282.Google Scholar
Piriz, A.R., Lopez Cela, J.J., Tahir, N.A. & Hoffmann, D.H.H. (2006 b). Richtmyer-Meshkov flow in elastic solids. Phys. Rev. E 74, 37301/1–4.CrossRefGoogle ScholarPubMed
de Rességuier, T., Couturier, S., Boustie, M., David, J. & Niérat, G. (1996). Characterization of laser-driven shocks of high intensity using piezoelectric polymers. J. Appl. Phys. 80, 36563661.CrossRefGoogle Scholar
Reuther, A., Laubereau, A. & Nikogosyan, D.N. (1996). Primary photochemical processes in water. J. Phys. Chem. 100, 1679416800.CrossRefGoogle Scholar
Richtmyer, R.D. (1960). Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 23, 297319.CrossRefGoogle Scholar
Simon, P., Gerhardt, H. & Szatmari, S. (1989). Intensity-dependent loss properties of window materials at 248 nm. Opt. Lett. 14, 12071209.CrossRefGoogle Scholar
Taylor, G.I. (1950). The instabilities of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. Roy. Soc. A 201, 192196.Google Scholar
Tollier, L., Fabbro, R. & Bartnicki, E. (1998). Study of the laser-driven spallation process by the velocity interferometer system for any reflector interferometry technique. I. Laser-shock characterization. J. Appl. Phys. 83, 12241230.CrossRefGoogle Scholar
Tomie, T., Okuda, I. & Yano, M. (1989). Three-photon absorption in CaF2 at 248.5 nm. Appl. Phys. Lett. 55, 325327.CrossRefGoogle Scholar
Zel'dovich, Ya.B. & Raizer, Yu.P. (1966). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. New York: Academic Press.Google Scholar
Zvorykin, V.D. & Lebo, I.G. (1999). Laser and target experiments on KrF GARPUN laser installation at FIAN. Laser Part. Beams 17, 6988.CrossRefGoogle Scholar
Zvorykin, V.D. & Lebo, I.G. (2000). Application of a high-power KrF laser for the study of supersonic gas flows and the development of hydrodynamic instabilities in layered media. Quant. Electron. 30, 540544.CrossRefGoogle Scholar
Zvorykin, V.D., Bakaev, V.G., Iskakov, A.B., Lebo, I.G., Sychugov, G.V. & Tishkin, V.F. (2003). GARPUN KrF-laser-target experiments and numerical simulations on the concept of laser-driven shock tube. SPIE 5228, 151156.Google Scholar
Zvorykin, V.D., Bakaev, V.G., Lebo, I.G., Sychugov, G.V. (2004 a). Hydrodynamics of plasma and shock waves generated by high-power GARPUN KrF laser. Laser Part. Beams 22, 5157.CrossRefGoogle Scholar
Zvorykin, V.D., Bakaev, V.G., Batani, D., Lebo, I.G., Levchenko, A.O., Sychugov, G.V., Tishkin, V.F. & Zayarnyi, D.A. (2004 b). High-Energy GARPUN KrF laser interaction with solid and thin-foil targets in ambient air. SPIE 5448, 654668.Google Scholar
Zvorykin, V.D., Krasnyuk, I.A., Lebo, I.G. & Levchenko, A.O. (2005). Simulation of the turbulent-mixing region development upon laser acceleration of thin foils. Bull. Lebedev Phys. Inst. 9, 3441.Google Scholar
Zvorykin, V.D., Bakaev, V.G., Gaynutdinov, R.V., Levchenko, A.O., Sagitov, S.I., Sergeev, P.B., Stavrovskii, D.B. & Ustinovskii, N.N. (2006). Development and evaluation of fluorine-resistant coatings for windows of high-energy KrF laser. SPIE 6053, 60530M/1–9.Google Scholar
Zvorykin, V.D., Didenko, N.V., Ionin, A.A., Kholin, I.V., Konyashchenko, A.V., Krokhin, O.N., Levchenko, A.O., Mavritskii, A.O., Mesyats, G.A., Molchanov, A.G., Rogulev, M.A., Seleznev, L.V., Sinitsyn, D.V., Tenyakov, S.Y., Ustinovskii, N.N. & Zayarnyi, D.A. (2007). GARPUN-MTW: A hybrid Ti: Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Laser Part. Beams 25, 435451.CrossRefGoogle Scholar
Zvorykin, V., Berthe, L., Boustie, M., Levchenko, A. & Ustinovskii, N. (2008). Dynamics of shock waves generated in liquids by high-energy KrF laser. SPIE 6985, 69850R/1-10.Google Scholar