Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T22:42:22.895Z Has data issue: false hasContentIssue false

Obtaining microspherical cryotargets by the method of contact point

Published online by Cambridge University Press:  09 March 2009

S. Denus
Affiliation:
Institute of Plasma Physics and Laser Microfusion, 00–908 Warsaw 49, P.O. Box 49, Poland.
W. Muniak
Affiliation:
Institute of Plasma Physics and Laser Microfusion, 00–908 Warsaw 49, P.O. Box 49, Poland.
E. Woryna
Affiliation:
Institute of Plasma Physics and Laser Microfusion, 00–908 Warsaw 49, P.O. Box 49, Poland.

Abstract

In this paper we present main parameters of the thermonuclear fuel and relations connecting the thickness of an isothermal homogeneous cryolayer with gaseous microballoon parameters. A model of the temperature field calculation (the azimuthal temperature gradient and the temperature distribution) and the way of shaping it under practical experimental conditions by the contact-point method is presented. The temperature distribution calculation explains the “sag” effect observed in many experiments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basov, N. G. et al. 1982 Kvantovaya Elektronika 9, 1945.Google Scholar
Biernat, R. et al. 1980 IPPLM Report 22/80 (42).CrossRefGoogle Scholar
Borowiecki, M. et al. 1981 IPPLM Report 8/81 (68).CrossRefGoogle Scholar
Cesarz, T. et al. 1980 IPPLM Report 2/80 (22).CrossRefGoogle Scholar
Denus, S. et al. 1977 J. Techn. Phys. 18, 407.Google Scholar
Fortunska, W. et al. 1983 Biul. WAT 4, 115.Google Scholar
Fortunska, W. et al. 1983a Biul. WAT 4, 129.Google Scholar
Friedman, W. D. et al. 1974 Rev. Sci. Instrum. 45, 1245.CrossRefGoogle Scholar
Gamaly, E. G. et al. 1982 Preprint FIAN No 98.Google Scholar
Ginodian, V. B. et al. 1977 Kratkie soobchtchenya po fizike 8, 8.Google Scholar
Grilly, E. R. 1977 Rev. Sci. Instrum. 48, 148.CrossRefGoogle Scholar
Henderson, T. M. et al. 1975 Adv. Cryog. Eng. 21, 455.Google Scholar
Henderson, T. M. & Johnson, R. R. 1977 Appl. Phys. Lett. 31, 18.CrossRefGoogle Scholar
Henderson, T. M. et al. 1978 Adv. Cryog. Eng. 23, 682.Google Scholar
Henderson, T. M. et al. 1978a Adv. Cryog. Eng. 23, 690.Google Scholar
Isakov, A. I. et al. 1976 Kratkie soobchtchenya po fizike 5, 3.Google Scholar
Kitagaki, K. 1984 ILE-QPR-84–11, 23.Google Scholar
Mok, L. et al. 1983 J. Vac. Sci. Technol. A 1, 897.CrossRefGoogle Scholar
Muniak, W. & Woryna, E. 1984 IPPLM Report 3/84 (119).CrossRefGoogle Scholar
Musinski, D. L. et al. 1980 J. Appl. Phys. 51, 1394.CrossRefGoogle Scholar
Sigel, R. et al. 1969 J. Phys. E: Sci. Instrum. 2, 187.CrossRefGoogle Scholar
Woerner, R. L. 1977 UCRL-50021–77.Google Scholar