Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T21:54:36.041Z Has data issue: false hasContentIssue false

Laser-electron generator for X-ray applications in science and technology

Published online by Cambridge University Press:  01 August 2008

E.G. Bessonov
Affiliation:
X-ray Optics Laboratory, P.N. Lebedev Physical Institute of RAS, Moscow, Russia
M.V. Gorbunkov
Affiliation:
X-ray Optics Laboratory, P.N. Lebedev Physical Institute of RAS, Moscow, Russia
B.S. Ishkhanov
Affiliation:
Moscow State University, Moscow, Russia
P.V. Kostryukov
Affiliation:
Moscow State University, Moscow, Russia
Yu.Ya. Maslova
Affiliation:
X-ray Optics Laboratory, P.N. Lebedev Physical Institute of RAS, Moscow, Russia
V.I. Shvedunov
Affiliation:
Moscow State University, Moscow, Russia
V.G. Tunkin
Affiliation:
Moscow State University, Moscow, Russia
A.V. Vinogradov*
Affiliation:
X-ray Optics Laboratory, P.N. Lebedev Physical Institute of RAS, Moscow, Russia
*
Address correspondence and reprint requests to: A.V. Vinogradov, X-ray Optics Laboratory, P.N. Lebedev Physical Institute of RAS, Leninsky Prospekt, 53, Moscow 119991, Russia. E-mail: [email protected]

Abstract

The possibility of the creation and the application prospects of the laser-electron X-ray generator based on Thomson scattering of laser radiation on a bunch of relativistic electrons are considered. Such a generator fills the existing gap between X-ray tubes and synchrotron radiation sources, which is several orders of magnitude in terms of the brightness, average intensity, size, and also in the construction and running costs.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdallah, J., Batani, D., Desai, T., Lucchini, G., Faenov, A., Pikuz, T., Magunov, A. & Narayanan, V. (2007). High resolution X-ray emission spectra from picosecond laser irradiated Ge targets. Laser Part. Beams 25, 245252.CrossRefGoogle Scholar
Agafonov, A., Androsov, V., Botman, J.I.M., Botman, J.I.M., Bulyak, V., Dovbnya, A., Drebot, I., Gladkikh, P., Grevtsev, V., Grigor'ev, Yu., Gvozd, A., Ivashchenko, V., Karnaukhov, I., Kovalyova, N., Kozin, V., Lapshin, V., Lebedev, A., Lyashchenko, V., Markov, V., Mocheshnikov, N., Molodkin, V., Mytsykov, A., Neklyudov, I., Peev, F., Rezaev, A., Shcherbakov, A., Skirda, V., Skomorokhov, V., Shpak, A., Tatchyn, R., Telegin, Yu., Trotsenko, V., Zelinsky, A. & Zvonar'ova, O. (2005). Status of Kharkov X-ray generator NESTOR. SPIE 5917, 97104.Google Scholar
Artyukov, I.A., Bessonov, E.G., Vinogradov, A.V., Gorbunkov, M.V., Zubavichus, Ya.V., Ishkhanov, B.S., Kostryukov, P.V., Maslova, Yu.Ya., Popov, N.L., Poseryaev, A.V., Postnov, A.A., Slovokhotov, Yu.L., Tunkin, V.G., Uspenskii, Yu.A., Feshchenko, R.M., Shabalin, Yu.V. & Shvedunov, V.I. (2007). Laser–electron X-ray generator. J Surf. Invest. 1, 435442.Google Scholar
Blumberg, L.N. & Blum, E. (1993). Simulation of emittance dilution in electron storage ring from compton backscattering. PAC 93, 35793581.Google Scholar
Brown, W.J., Anderson, S.G., Barty, C.P.J.Betts, S.M., Booth, R., Crane, J.K., Cross, R.R., Fittinghoff, D.N., Gibson, D.J., Hartemann, F.V., Hartouni, E.P., Kuba, J., Sage, G.P.Le, Slaughter, D.R., Tremaine, A.M., Wootton, A.J., Rosenzweig, J.B. & Springer, P.T. (2004). Experimental characterization of an ultrafast Thomson scattering X-ray source with three-dimensional time and frequency-domain analysis. Phys. Rev. 7, 060702/1–12.Google Scholar
Carroll, F.E. (2002). Tunable monochromatic X-rays: A new paradigm in medicine. AJR 179, 583590.CrossRefGoogle ScholarPubMed
Dobashi, K., Fukasawa, A., Uesaka, M., Iijima, H., Imai, T., Sakamoto, F., Ebina, F., Urakawa, J., Akemoto, M., Higo, T. & Hayano, H. (2005). Design of compact monochromatic tunable hard X-ray source based on X-band Linac. Jap. J. Appl. Phys. 44, 19992005.CrossRefGoogle Scholar
Gorbunkov, M.V., Tunkin, V.G., Bessonov, E.G., Fechtchenko, R.M., Artyukov, I.A., Shabalin, Yu.V., Kostryukov, P.V., Maslova, Yu.Ya., Poseryaev, A.V., Shvedunov, V.I., Vinogradov, A.V., Mikhailchenko, A.A. & Ishkhanov, B.S. (2005). Proposal of a compact repetitive dichromatic X-ray generator with millisecond duty cycle for medical applications. SPIE 5919, OU1–OU6.Google Scholar
Hirano, K., Fukuda, M., Takano, M., Yamazaki, Y., Muto, T., Araki, S., Terunuma, N., Kuriki, M., Akemoto, M., Hayano, H. & Urakawa, J. (2006). High-intensity multi-bunch beam generation by a photo-cathode RF gun, Nucl. Instr. Methods 560A, 233239.CrossRefGoogle Scholar
JINR (2001) Dubna Electron Synchrotron, DELSY, Phase I: Free Electron Laser, Conceptual Design Report, Dubna, Report No. E9-2001-272.Google Scholar
Kaertner, F.X., Graves, W.S., Moncton, D.E. & Ilday, F.O. (2006). Compact, high-flux, short-pulse X-ray source. US Patent 2006/0251217 A1, Pub. Date: Nov. 9, 2006.Google Scholar
Khalenkov, A.M., Borisenko, N.G., Kondrashov, V.N., Merkuliev, Y.A., Limpouch, J. & Pimenov, V.G. (2006). Experience of micro-heterogeneous target fabrication to study energy transport in plasma near critical density. Laser Part. Beams 24, 283290.CrossRefGoogle Scholar
Kilkenny, J.D., Alexander, N.B., Nikroo, A., Steinman, D.A., Nobile, A., Bernat, T., Cook, R., Letts, S., Takagi, M. & Harding, D. (2005). Laser targets compensate for limitations in inertial confinement fusion drivers. Laser Part. Beams 23, 475482.CrossRefGoogle Scholar
Koresheva, E.R., Osipov, I.E. & Aleksandrova, I.V. (2005). Free standing target technologies for inertial fusion energy: Target fabrication, characterization, and delivery. Laser Part. Beams 23, 563571.CrossRefGoogle Scholar
Kuroda, R., Koike, M.K., Ogawa, H., Sei, N., Toyokawa, H., Yamada, K.Y., Yasumoto, M.Y., Nakajyo, N., Sakai, F. & Yanagida, T. (2006). Simulation study of compact hard X-ray source via laser Compton scattering. EPAC 6, 23462348.Google Scholar
Limborg-Deprey, C. (2005). Maximizing brightness in photoinjectors. In Proc. of the 27th International Free Electron Laser Conference, Stanford, CA.Google Scholar
Loewen, R.J. (2003). A Compact Light Source: Design and Technical Feasibility Study of a Laser-Electron Storage Ring X-Ray Source. Ph.D Thesis. Stanford, CA: Stanford University Press.Google Scholar
Losito, R., Braun, H.-H., Champault, N., Chevallay, E., Fedosseev, V., Kumar, A., Masi, A., Suberlucq, G., Divall, M., Hirst, G., Kurdi, G., Martin, W., Musgrave, I., Ross, I., Springate, E., Bienvenu, G., Mercier, B., Prevost, C. & Roux, R. (2006). The PHIN photo-injector for the CTF3 drive beam. EPAC 6, 25172519.Google Scholar
Marhauser, F. (2006). High power tests of a high duty cycle, high repetition rate RF photo-injector gun for the BESSY FEL. EPAC 6, 6870.Google Scholar
Mohamed, T., Andler, G. & Schuch, R. (2002). Development of electro-optical device for storage of high power laser pulses. Opt. Comm. 214, 291295.CrossRefGoogle Scholar
Nobile, A., Nikroo, A., Cook, R.C., Cooley, J.C., Alexander, D.J., Hackenberg, R.E., Necker, C.T., Dickerson, R.M., Kilkenny, J.L., Bernat, T.P., Chen, K.C., Xu, H., Stephens, R.B., Huang, H., Haan, S.W., Forsman, A.C., Atherton, L.J., Letts, S.A., Bono, M.J. & Wilson, D.C. (2006). Status of the development of ignition capsules in the US effort to achieve thermonuclear ignition on the national ignition facility. Laser Part. Beams 24, 567578.CrossRefGoogle Scholar
Orlov, N.Y., Gus'kov, S.Y., Pikuz, S.A., Rozanov, V.B., Shelkovenko, T.A., Zmitrenko, N.V. & Hammer, D.A. (2007). Theoretical and experimental studies of the radiative properties of hot dense matter for optimizing soft X-ray sources. Laser Part. Beams 25, 415423.CrossRefGoogle Scholar
Sakaue, K., Washio, M., Araki, S., Higashi, Y., Honda, Y., Taniguchi, T., Urakawa, J., Fukuda, M.K., Takano, M., Sakai, H. & Sasao, N. (2006). Development of pulse laser super-cavity for compact high flux x-ray sources. EPAC 6, 31553157.Google Scholar
Schollmeier, M., Prieto, G.R., Rosmej, F.B., Schaumann, G., Blazevic, A., Rosmej, O.N. & Roth, M. (2006). Investigation of laser-produced chlorine plasma radiation for non-monochromatic X-ray scattering experiments. Laser Part. Beams 24, 335345.CrossRefGoogle Scholar
Schollmeier, M., Roth, M., Blazevic, A., Brambrink, E., Cobble, J.A., Fernandez, J.C., Flippo, K.A., Gautier, D.C., Habs, D., Harres, K., Hegelich, B.M., Hesslinga, T., Hoffmann, D.H.H., Letzring, S., Nurnberg, F., Schaumann, G., Schreiber, J. & Witte, K. (2007). Laser ion acceleration with micro-grooved targets. Nucl. Instr. & Meth. Phys. Res. A 577, 186190.CrossRefGoogle Scholar
Sertore, D., Monaco, L., Pagani, C., Han, J.H. & Schreiber, S. (2006). High QE photo-cathodes at Flash. EPAC 6, 24962498.Google Scholar
Vicario, C., Bellaveglia, M., Filippetto, D., Gallo, A., Gatti, G., Ghigo, A., Musumeci, P. & Petrarca, M. (2006). Commissioning of the laser system for SPARC photo-injector. EPAC 6, 31463148.Google Scholar
Vlieks, A.E., Caryotakis, G., Fowkes, W.R., Jongewaard, E.N., Landahl, E.C., Loewen, R. & Luhmann, N.C. (2002). Development of an X-band RF Gun at SLAC. AIP Conf. Proc. 625, 107116.CrossRefGoogle Scholar
Wang, X.J., Babzien, M., Chang, X.Y., Lynch, D., Pjerov, S., Woodle, M. & Wu, Z. (2002). S-band high duty photo-injection system. EPAC 2, 18221824.Google Scholar
Wong, C.S., Woo, H.J. & Yap, S.L. (2007). A low energy tunable pulsed X-ray source based on the pseudospark electron beam. Laser Part. Beams 25, 497502.Google Scholar