Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T22:10:03.814Z Has data issue: false hasContentIssue false

Evolution of a high-density electron beam in the field of a super-intense laser pulse

Published online by Cambridge University Press:  07 July 2008

V.V. Kulagin
Affiliation:
APRI and School of Photon Science and Technology, GIST, Gwangju, Republic of Korea
V.A. Cherepenin
Affiliation:
Institute of Radioengineering and Electronics RAS, Moscow, Russia
M.S. Hur
Affiliation:
Center for Advanced Accelerators, KERI, Ansan, Republic of Korea
J. Lee
Affiliation:
APRI and School of Photon Science and Technology, GIST, Gwangju, Republic of Korea
H. Suk*
Affiliation:
APRI and School of Photon Science and Technology, GIST, Gwangju, Republic of Korea
*
Address correspondence and reprint requests to: Hyyong Suk, APRI and School of Photon Science and Technology, GIST, Gwangju 500-712, Republic of Korea. E-mail: [email protected]

Abstract

The evolution of a high-density electron beam in the field of a super-intense laser pulse is considered. The one-dimensional (1D) theory for the description of interaction, taking into account the space-charge forces of the beam, is developed, and exact solutions for the equations of motion of the electrons are found. It was shown that the length of the high-density electron beam increases slowly in time after initial compression of the beam by the laser pulse as opposed to the low-density electron beam case, where the length is constant on average. Also, for the high-density electron beam, the sharp peak frozen into the density distribution can appear in addition to a microbunching, which is characteristic for a low-density electron beam in a super-intense laser field. Characteristic parameters for the evolution of the electron beam are calculated by an example of a step-like envelope of the laser pulse. Comparison with 1D particle-in-cell simulations shows adequacy of the derived theory. The considered issue is very important for a special two-pulse realization of a Thomson scattering scheme, where one high-intensity laser pulse is used for acceleration, compression and microbunching of the electron beam, and the other probe counter-streaming laser pulse is used for scattering with frequency up-shifting and amplitude enhancement.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baeva, T., Gordienko, S. & Pukhov, A. (2007). Relativistic plasma control for single attosecond pulse generation: Theory, simulations, and structure of the pulse. Laser Part. Beams 25, 339346.CrossRefGoogle Scholar
Barbara, P.F., Knox, W.H., Mourou, G.A. and Zewail, A.H., eds. (1994). Ultrafast Phenomena IX, Berlin: Springer-Verlag.CrossRefGoogle Scholar
Brau, C.A. (1990). Free-Electron Lasers. San Diego: Academic.Google Scholar
Canova, F., Flacco, A., Canova, L., Clady, R., Chambaret, J.-P., Ple, F., Pittman, M., Planchon, T.A., Silva, M., Benocci, R., Lucchini, G., Batani, D., Lavergne, E., Dovillaire, G. & Levecq, X. (2007). Efficient aberrations pre-compensation and wavefront correction with a deformable mirror in the middle of a petawatt-class CPA laser system. Laser Part. Beams 25, 649655.CrossRefGoogle Scholar
Cherepenin, V.A., Il'in, A.S. & Kulagin, V.V. (2001). Acceleration of dense electron bunches at the front of a high-power electromagnetic wave. Fiz. Plazmy 27, 11111120.Google Scholar
Cherepenin, V.A. & Kulagin, V.V. (2004). Dynamics and radiation of thin foil in the field of super-intense laser pulse. Phys. Lett. 321A, 103110.CrossRefGoogle Scholar
Crowell, R.A., Gosztola, D.J., Shkrob, I.A., Oulianov, D.A., Jonah, C.D. & Rajh, T. (2004). Fundamentals of radiation chemistry. Radiat. Phys. Chem. 70, 501509.CrossRefGoogle Scholar
Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, I., Fell, B., Frackiewicz, A.J., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2005). Vulcan petawatt: Design, operation and interactions at 5 × 1020 Wcm−2. Laser Part. Beams 23, 8793.Google Scholar
Esarey, E., Ride, S.K. & Sprangle, P. (1993). Nonlinear Thomson scattering of intense laser pulses from beams and plasmas. Phys. Rev. E, 48, 30033021.CrossRefGoogle ScholarPubMed
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.CrossRefGoogle ScholarPubMed
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Fubiani, G., Qiang, J., Esarey, E., Leemans, W.P. & Dugan, G. (2006). Space charge modeling of dense electron beams with large energy spreads . Phys. Rev. ST Accel. Beams 9, 064402.CrossRefGoogle Scholar
Geddes, C.G.R., Toth, Cs., van Tilborg, J., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538541.CrossRefGoogle ScholarPubMed
Gupta, D.N. & Suk, H. (2007). Electron acceleration to high energy by using two chirped lasers. Laser Part. Beams 25, 3136.CrossRefGoogle Scholar
Hafz, N.M, Choi, I.W., Sung, J.H., Kim, H.T., Hong, K.-H., Jeong, T.M., Yu, T.J., Kulagin, V., Suk, H., Noh, Y.-C., Ko, D.-K. & Lee, J. (2007). Dependence of the electron beam parameters on the stability of laser propagation in a laser wakefield accelerator. Appl. Phys. Lett. 90, 151501.CrossRefGoogle Scholar
Il'in, A.S., Kulagin, V.V. & Cherepenin, V.A. (1999). Radiation effects in the electron sheet model. Radiotekh. Elektron. 44, 389400.Google Scholar
Kalashnikov, M., Osvay, K. & Sandner, W. (2007). High-power Ti:Sapphire lasers: Temporal contrast and spectral narrowing. Laser Part. Beams 25, 219223.CrossRefGoogle Scholar
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.CrossRefGoogle Scholar
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.CrossRefGoogle Scholar
Kulagin, V.V., Cherepenin, V.A. & Suk, H. (2004a). Generation of relativistic electron mirrors and frequency upconversion in laser-plasma interactions. Appl. Phys. Lett. 85, 33223324.CrossRefGoogle Scholar
Kulagin, V.V., Cherepenin, V.A. & Suk, H. (2004b). Compression and acceleration of dense electron bunches by ultraintense laser pulses with sharp rising edge. Phys. Plasmas 11, 52395249.CrossRefGoogle Scholar
Kulagin, V.V., Cherepenin, V.A., Hur, M.S. & Suk, H. (2006a). Compression and microbunching of electron beams by ultra-intense laser pulses. Phys. Lett. 353A, 505511.CrossRefGoogle Scholar
Kulagin, V.V., Hur, M.S. & Suk, H. (2006b). Bunching of electron beams by ultra-relativistic laser pulses. J. Korean Phys. Soc. 48, 747754.Google Scholar
Kulagin, V.V., Cherepenin, V.A., Hur, M.S. & Suk, H. (2007a). Theoretical investigation of controlled generation of a dense attosecond relativistic electron bunch from the interaction of an ultrashort laser pulse with a nanofilm. Phys. Rev. Lett., 99, 124801.CrossRefGoogle ScholarPubMed
Kulagin, V.V., Cherepenin, V.A., Hur, M.S. & Suk, H. (2007b). Flying mirror model for interaction of a super-intense nonadiabatic laser pulse with a thin plasma layer: Dynamics of electrons in a linearly polarized external field. Phys. Plasmas 11, 113101.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. (1975) The Classical Theory of Fields. Oxford: Pergamon.Google Scholar
Lapostolle, P., Lombardi, A.M., Tanke, E., Valero, S., Garnett, R.W. & Wangler, T.P. (1996). A modified space charge routine for high intensity bunched beams. Nucl. Instrum. Methods Phys. Res., Sect. A 379, 2140.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535538.CrossRefGoogle ScholarPubMed
Marshall, T.C. (1985). Free-Electron Lasers. New York: McMillan.Google Scholar
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Goette, S., Haefner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H.J., Kuehl, T., Kunzer, S., Merz, T., Onkels, E., Perry, M.D., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschwitz, A., Thiel, R., Ursescu, D,. Wiewior, P., Wittrock, U. & Zielbauer, B. (2005). Status of PHELIX laser and first experiments. Laser Part. Beams 23, 385389.CrossRefGoogle Scholar
Reiser, M. (1994). Theory and Design of Charged Particle Beams. New York: Wiley.CrossRefGoogle Scholar
Reitsma, A.J.W., Goloviznin, V.V., Kamp, L.P.J. & Schep, T.J. (2001). Simulation of laser wakefield acceleration of an ultrashort electron bunch. Phys. Rev. E 63, 046502.CrossRefGoogle ScholarPubMed
Sakai, K., Miyazaki, S., Kawata, S., Hasumi, S. & Kikuchi, T. (2006). High-energy-density attosecond electron beam production by intense short-pulse laser with a plasma separator. Laser Part. Beams 24, 321327.CrossRefGoogle Scholar
Saldin, E.L., Schneidmiller, E.A. & Yurkov, M.V. (1999). The Physics of Free Electron Lasers. Berlin: Springer-Verlag.Google Scholar
Saldin, E.L., Schneidmiller, E.A. & Yurkov, M.V. (2008). Coherence properties of the radiation from X-ray free electron laser. Opt. Comm. 281, 11791188.CrossRefGoogle Scholar
Umstadter, D., Kim, J.K. & Dodd, E. (1996). Laser injection of ultrashort electron pulses into wakefield plasma waves. Phys. Rev. Lett. 76, 20732076.CrossRefGoogle ScholarPubMed
Usui, H., Verboncoeur, J.P. & Birdsall, C.K. (2000). Development of 1D object-oriented particle-in-cell code (1d-XOOPIC). IEICE Trans. Electron. E83C, 989992.Google Scholar
Vshivkov, V.A., Naumova, N.M., Pegoraro, F. & Bulanov, S.V. (1998). Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil. Phys. Plasmas, 27272741.CrossRefGoogle Scholar
Wangler, T.P. (1998). RF Linear Accelerators. New York: Wiley, 270272.CrossRefGoogle Scholar
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.CrossRefGoogle Scholar
Zvorykin, V.D., Didenko, N.V., Ionin, A.A., Kholin, I.V., Konyashchenko, A.V., Krokhin, O.N., Levchenko, A.O., Mavritskii, A.O., Mesyats, G.A., Molchanov, A.G., Rogulev, M.A., Seleznev, L.V., Sinitsyn, D.V., Tenyakov, S.Y., Ustinovskii, N.N. & Zayarnyi, D.A. (2007). GARPUN-MTW: A hybrid Ti: Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Laser Part. Beams 25, 435451.CrossRefGoogle Scholar