INTRODUCTION
Molluscan age determination has long been the subject of both biological and paleonto-logical research (Mossop, 1922 a, b; Haskin, 1954; Merrill, Posgay & Nichy, 1965; Andrews, 1972). Several workers have listed difficulties associated with traditional methods of determining the age of an organism based upon surface shell morphology (Pannella & MacClintock, 1968; Farrow, 1971, 1972; Berry, 1971). Others, such as Craig & Hallum (1963) have attempted, with moderate success, to circumvent these problems statistically by using size-frequency relationships, but such methods are of little value in age analysis of isolated individuals. The principal difficulty encountered in shell surface analyses arises from an inability to distinguish spawning and disturbance lines from annual marks. Problems associated with this separation have been reduced over the past decade by the discovery of daily and tidal periodicity structures within the shells of numerous Recent and fossil species of pelecypods (Barker, 1964,1970; Pannella & MacClintock, 1968; Clark, 1968; House & Farrow, 1968; Farrow, 1971, 1972). The biological and paleontological significance of such growth increments have been discussed at length by Pannella & MacClintock (1968), Barker (1970), and Clark (1974). When present in continuous sequences, these periodicity structures facilitate an accurate age determination of individual specimens.