Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T00:52:04.676Z Has data issue: false hasContentIssue false

Fatty acids composition as an indicator of food intake in Merluccius hubbsi larvae

Published online by Cambridge University Press:  28 September 2018

Brenda Temperoni*
Affiliation:
Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rodríguez Peña 4046, B7602GSD, Mar del Plata, Argentina Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo No 1, B7602HSA, Mar del Plata, Argentina
Agueda Massa
Affiliation:
Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rodríguez Peña 4046, B7602GSD, Mar del Plata, Argentina Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo No 1, B7602HSA, Mar del Plata, Argentina
María Delia Viñas
Affiliation:
Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rodríguez Peña 4046, B7602GSD, Mar del Plata, Argentina Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo No 1, B7602HSA, Mar del Plata, Argentina
*
Author for correspondence: Brenda Temperoni, E-mail: [email protected]

Abstract

Fatty acids (FA) analysis is a well-established approach for qualitatively studying feeding preferences. In the Argentinean Continental Shelf, Argentine hake Merluccius hubbsi supports the major demersal finfish fishery. The Patagonian stock of the species spawns and nurses in austral summer in the north Patagonian shelf (NPS, 43°–45°30′S). Previous studies about larval feeding in the NPS have solely focused on gut contents, indicating selectivity upon calanoid copepods. Hence, our main objective was to apply the FA approach to confirm and/or broaden M. hubbsi larval food selection. Hake larvae and copepod FA profiles overlapped significantly, dominated by the saturated FA 16:0, the monounsaturated FAs 18:1n-9 and 22:1n-9, and the polyunsaturated FA 22:6n-3. Moreover, identified markers typical of bacteria (15:0, 17:0) and dinoflagellates (18:4n-3, 22:6n-3) suggest a microbial input at the base of the NPS food web, with the latter probably acting as an intermediate step between bacteria and hake larvae. Possible direct predation upon protozoans by larvae is postulated, broadening the known trophic spectrum derived from classical diet analyses. The FA approach allowed us to clarify feeding preferences in the NPS, with data being relevant in the context of hake recruitment studies.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackman, RG (1980) Fish lipids. Part 1. In Connell, JJ (ed.), Advances in Fish Science Technology. Farnham: Fishing News Books, pp. 86103.Google Scholar
Ackman, RG (2004) The ocean supplies more EPA and DHA than we can use. OCL Oléagineux Corps Gras Lipides 11, 112115.Google Scholar
Álvarez Colombo, G, Dato, C, Macchi, G, Palma, E, Machinandiarena, L, Christiansen, HE, Betti, P, Derisio, C, Martos, P, Castro-Machado, F, Brown, D, Ehrlich, M, Mianzan, H and Acha, EM (2011) Distribution and behavior of Argentine hake larvae: evidences of a biophysical mechanism for self-recruitment in the northern Patagonian shelf waters. Ciencias Marinas 37, 633657.Google Scholar
Anderson, MJ, Gorley, RN and Clarke, KR (2008) PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. Plymouth: PRIMER-E.Google Scholar
Antacli, JC (2011) Estrategias de vida de los copépodos Drepanopus forcipatus y Calanus australis en relación con los recursos tróficos en la plataforma patagónica austral (Argentina, 47°–55°S) (PhD thesis). Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.Google Scholar
Aubone, A, Bezzi, S, Castrucci, R, Dato, C, Ibáñez, P, Irusta, G, Pérez, M, Renzi, M, Santos, B, Scarlato, N, Simonazzi, M, Tringali, L and Villarino, F (2000) Merluza (Merluccius hubbsi). In Bezzi, S, Akselman, R and Boschi, EE (eds), Síntesis del estado actual de las pesquerías marítimas argentinas y de la cuenca del plata. Años 1997–1998, con la actualización de 1999. Mar del Plata: Publicaciones especiales INIDEP, pp. 2939.Google Scholar
Betti, P, Machinandiarena, L and Ehrlich, MD (2009) Larval development of Argentine hake Merluccius hubbsi. Journal of Fish Biology 74, 235249.Google Scholar
Bligh, EG and Dyer, JW (1959) Extraction of lipids in solution by the method of Bligh & Dyer. Canadian Journal of Biochemistry and Physiology 37, 911917.Google Scholar
Broglio, E, Jónasdóttir, SH, Calbet, A, Jakobsen, HH and Saiz, E (2003) Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: relationship with prey fatty acid composition. Aquatic Microbial Ecology 31, 267278.Google Scholar
Budge, SM, Iverson, SJ and Koopman, HN (2006) Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Marine Mammal Science 22, 759801.Google Scholar
Carreto, JI, Carignan, MO, Montoya, NG and Cucchi Colleoni, AD (2007) Ecología del fitoplancton en los sistemas frontales del Mar Argentino. In Sánchez, RP and Bezzi, SI (eds), El Mar Argentino y sus recursos pesqueros. El ecosistema marino. Mar del Plata: Publicaciones Especiales INIDEP, pp. 1131.Google Scholar
Clarke, KR and Gorley, RN (2006) PRIMER v6: User Manual/Tutorial. Plymouth: PRIMER-E.Google Scholar
Cook, EJ, Shucksmith, R, Orr, H, Ashton, GV and Berge, J (2010) Fatty acid composition as a dietary indicator of the invasive caprellid, Caprella mutica (Crustacea: Amphipoda). Marine Biology 157, 1927.Google Scholar
Cripps, GC and Atkinson, A (2000) Fatty acid composition as an indicator of carnivory in Antarctic krill, Euphausia superba. Canadian Journal of Fisheries and Aquatic Sciences 57, 3137.Google Scholar
Dalsgaard, J and St. John, JM (2004) Fatty acid biomarkers: validation of food web and trophic markers using 13C-labelled fatty acids in juvenile sandeel (Ammodytes tobianus). Canadian Journal of Fisheries and Aquatic Sciences 61, 16711680.Google Scholar
Dalsgaard, J, St. John, JM, Müller-Navarra, DC and Hagen, W (2003) Fatty acid trophic markers in the pelagic marine environment: a review. Advances in Marine Biology 46, 225340.Google Scholar
Dijkman, NA and Kromkamp, JC (2006) Phospholipid-derived fatty acids as chemotaxonomic markers for phytoplankton: application for inferring phytoplankton composition. Marine Ecology Progress Series 324, 113125.Google Scholar
Dutto, MS, Kopprio, GA, Hoffmeyer, MS, Alonso, TS, Graeve, M and Kattner, G (2014) Planktonic trophic interactions in a human-impacted estuary of Argentina: a fatty acid marker approach. Journal of Plankton Research 36, 776787.Google Scholar
Ehrlich, MD and Ciechomski, JD (1994) Reseña sobre la distribución de huevos y larvas de merluza (Merluccius hubbsi) basada en veinte años de investigación. Frente Marítimo 15, 3750.Google Scholar
Falk-Petersen, S, Sargent, JR, Lønne, OJ and Timofeev, S (1999) Functional biodiversity of lipids in Antarctic zooplankton: Calanoides acutus, Calanus propinquus, Thysanoessa macrura and Euphausia crystallorophias. Polar Biology 21, 3747.Google Scholar
Fukami, K, Watanabe, A, Fujita, S, Yamaoka, K and Nishijima, T (1999) Predation on naked protozoan microzooplankton by fish larvae. Marine Ecology Progress Series 185, 285291.Google Scholar
Gaitán, E (2012) Tramas tróficas en sistemas frontales del Mar Argentino: estructura, dinámica y complejidad analizada mediante isótopos estables. PhD thesis, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.Google Scholar
Graeve, M, Dauby, P and Scailteur, Y (2001) Combined lipid, fatty acid and digestive tract content analyses: a penetrating approach to estimate feeding modes of Antarctic amphipods. Polar Biology 24, 853862.Google Scholar
Grote, B, Hagen, W, Lipinski, MR, Verheye, HM, Stenevik, EK and Ekau, W (2011) Lipids and fatty acids as indicators of egg condition, larval feeding and maternal effects in Cape hakes (Merluccius paradoxus and M. capensis). Marine Biology 158, 10051017.Google Scholar
Hagen, W, Kattner, G, Terbruggen, A and Van Vleet, ES (2001) Lipid metabolism of the Antarctic krill Euphausia superba and its ecological implications. Marine Biology 139, 95104.Google Scholar
Hallegraeff, GM, Nichols, PD, Volkman, JK, Blackburn, SI and Everitt, DA (1991) Pigments, fatty acids and sterols of the toxic dinoflagellate Gymnodinium catenatum. Journal of Phycology 27, 591599.Google Scholar
Hammann, S, Tillmann, U, Schröder, M and Vetter, W (2013) Profiling the fatty acids from a strain of the microalgae Alexandrium tamarense by means of high-speed counter-current chromatography and gas chromatography coupled with mass spectrometry. Journal of Chromatography A 1312, 93103.Google Scholar
International Organization for Standardization (2017) Animal and vegetable fats and oils – Gas chromatography of fatty acid methyl esters. Part 2: Preparation of methyl esters of fatty acids (ISO 12966-2). Available at https://www.iso.org/standard/72142.html.Google Scholar
Iverson, S (2009) Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination. In Arts, MT, Brett, MT and Kainz, MJ (eds), Lipids in Aquatic Ecosystems. New York: Springer, pp. 281307.Google Scholar
Kaneda, T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiological Reviews 55, 288302.Google Scholar
Klein Breteler, WCM, Schogt, N, Baas, M, Schouten, S and Kraay, GW (1999) Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Marine Biology 135, 191198.Google Scholar
Laurel, BJ, Copeman, LA, Hurst, TP and Parrish, CC (2010) The ecological significance of lipid/fatty acid synthesis in developing eggs and newly hatched larvae of Pacific cod (Gadus macrocephalus). Marine Biology 157, 17131724.Google Scholar
Mansour, MP, Volkman, JK, Jackson, AE and Blackburn, SI (1999) The fatty acid and sterol composition of five marine dinoflagellates. Journal of Phycology 35, 710720.Google Scholar
Mansour, MP, Frampton, DMF, Nichols, PD, Volkman, JK and Blackburn, SI (2005) Lipid and fatty acid yield of nine stationary-phase microalgae: applications and unusual C24–C28 polyunsaturated fatty acids. Journal of Applied Phycology 17, 287300.Google Scholar
Morote, E, Olivar, MP, Bozzano, A, Villate, F and Uriarte, I (2011) Feeding selectivity in larvae of the European hake (Merluccius merluccius) in relation to ontogeny and visual capabilities. Marine Biology 158, 13491361.Google Scholar
Napolitano, GE, Pollero, RJ, Gayoso, AM, MacDonald, BA and Thompson, RJ (1997) Fatty acids as trophic markers of phytoplankton blooms in the Bahia Blanca estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada). Biochemical Systematics and Ecology 25, 739755.Google Scholar
Nelson, MM, Mooney, BD, Nichols, PD and Phleger, CF (2001) Lipids of Antarctic Ocean amphipods: food chain interactions and the occurrence of novel biomarkers. Marine Chemistry 73, 5364.Google Scholar
Overton, J, Meyer, S, Støttrup, JG and Peck, MA (2010) Role of heterotrophic protists in first feeding by cod (Gadus morhua) larvae. Marine Ecology Progress Series 410, 197204.Google Scholar
Pájaro, M, Macchi, G and Martos, P (2005) Reproductive pattern of the Patagonian stock of Argentine hake (Merluccius hubbsi). Fisheries Research 72, 97108.Google Scholar
Paulsen, M, Clemmesen, C and Malzahn, AM (2014) Essential fatty acid (docosahexaenoic acid, DHA) availability affects growth of larval herring in the field. Marine Biology 161, 239244.Google Scholar
Phillips, KL, Nichols, PD and Jackson, GD (2003) Size-related dietary changes observed in the squid Moroteuthis ingens at the Falkland Islands: stomach contents and fatty-acid analyses. Polar Biology 26, 474485.Google Scholar
Pitt, KA, Connolly, RM and Meziane, T (2009) Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: a review. Hydrobiology 616, 119132.Google Scholar
Rossi, S, Sabatés, A, Latasa, M and Reyes, E (2006) Lipid biomarkers and trophic linkages between phytoplankton, zooplankton and anchovy (Engraulis encrasicolus) larvae in the NW Mediterranean. Journal of Plankton Research 28, 551562.Google Scholar
Sargent, JR and Falk-Petersen, S (1988) The lipid biochemistry of calanoid copepods. Hydrobiology 167, 101114.Google Scholar
St. John, MA and Lund, T (1996) Lipid biomarkers: linking the utilization of frontal plankton biomass to enhanced condition of juvenile north sea cod. Marine Ecology Progress Series 131, 7585.Google Scholar
Temperoni, B (2015) Análisis de la alimentación de larvas y juveniles del “stock” patagónico de la merluza común (Merluccius hubbsi) en relación con la composición taxonómica, abundancia y calidad nutricional del zooplancton. PhD thesis, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.Google Scholar
Temperoni, B and Viñas, MD (2013) Food and feeding of Argentine hake (Merluccius hubbsi) larvae in the Patagonian nursery ground. Fisheries Research 148, 4755.Google Scholar
Temperoni, B, Viñas, MD, Martos, P and Marrari, M (2014) Spatial patterns of copepod biodiversity in relation to a tidal front system in the main spawning and nursery area of the Argentine hake Merluccius hubbsi. Journal of Marine Systems 139, 443445.Google Scholar
Veloza, AJ (2005) Transfer of essential fatty acids by marine plankton. Masters thesis, The College of William and Mary, Williamsburg, VA.Google Scholar
Volkman, JK, Johns, RB, Gillian, FT and Perry, GJ (1980) Microbial lipids of an intertidal sediment. I. Fatty acids and hydrocarbons. Geochimica et Cosmochimica Acta 44, 11331143.Google Scholar
Watanabe, T (1993) Importance of docosahexaenoic acid in marine larval fish. Journal of the World Aquaculture Society 24, 152161.Google Scholar
Watanabe, T, Izquierdo, MS, Takeuchi, T, Satoh, S and Kitajima, C (1989) Comparison between eicosapentaenoic and docosahexaenoic acids in terms of essential fatty acid efficacy in larval red seabream. Nippon Suisan Gakkaishi 55, 16351640.Google Scholar