Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-10-04T13:53:02.979Z Has data issue: false hasContentIssue false

The permeability of the asteroid podial wall to water and potassium ions

Published online by Cambridge University Press:  11 May 2009

J. Binyon
Affiliation:
Department of Zoology, Royal Holloway College (University of London), Englefield Green, Surrey

Extract

Direct measurement of water loss from isolated podia of Luidia ciliaris under the influence of known levels of hydrostatic pressure has yielded a revised value for the permeability of this structure to water, namely 37.4 x 10-8 cm3/cm2.s.cm H2O pressure. The total fluid loss from a 50 g starfish will therefore be of the order of 0.75 ml/h. The mechanism for the replenishment of this fluid is discussed in the light of the traditional role of the madreporite. It would seem that adequate influx of fluid through this structure has not been observed, neither could it be responsible for ‘topping up’ in the case of arms severed from the parent body which still continue to move for considerable periods.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bethe, A. & Berger, E., 1931. Variationen im Mineralbestand verschiedner Blutarten. Pflügers Archiv für gesamte Physiologie des Menschen und der Tiere, 227, 571584.CrossRefGoogle Scholar
Binyon, J., 1962. Ionic regulation and mode of adjustment to reduced salinity of the starfish Asterias rubens L. Journal of the Marine Biological Association of the United Kingdom, 42, 4964.CrossRefGoogle Scholar
Binyon, J., 1964. On the mode of functioning of the water vascular system of the starfish Asterias rubens L. Journal of the Marine Biological Association of the United Kingdom, 44, 577588.CrossRefGoogle Scholar
Binyon, J., 1972. Physiology of Echinoderms. 264 pp. Oxford: Pergamon Press.Google Scholar
Fechter, H., 1965. Über die Funktion der Madreporenplatte der Echinoidea. Zeitschrift für vergleichende Physiologie, 51, 227257.CrossRefGoogle Scholar
Kerkut, G. A., 1953. The forces exerted by the tube feet during locomotion. Journal of Experi-mental Biology, 30, 575583.CrossRefGoogle Scholar
Kruger, F., 1932. Versuche über die Wasserbewegung durch die Madreporenplatte von Echinus. Zeitschrift für vergleichende Physiologie, 18, 157173CrossRefGoogle Scholar
Macbride, E. W., 1901. Echlnodermata. In Cambridge Natural History, vol. 1 (ed. Harmer, S. F. and Shipley, A. E.), 671 pp. London: Macmillan.Google Scholar
Mangold, E., 1908. Studien zur Physiologie des Nervensystems der Echinodermen. I. Die Fusschen der Seesterne und die Co-ordination ihrer Bewegungen. Pflügers Archiv für gesamte Physiologie des Menschen und der Tiere, 122, 315360.CrossRefGoogle Scholar
Nichols, D., 1960. The histology and activities of the tube feet of Antedon bifida. Quarterly Journal of Microscopical Science, 101, 105117.Google Scholar
Remane, A. & Schlieper, C., 1971. The Biology of Brackish Water. 372 pp. New York: J. WileyInterscience.Google Scholar
Woodley, J. D., 1967. Problems in the ophiuroid water vascular system. Symposia of the Zoological Society of London, 20, 75104.Google Scholar
Yazaki, M., 1930. On the circulation of the perivisceral fluid in Caudina chilensis. Science Reports. Tohoku Imperial University, Series 4, 5, 403414.Google Scholar
Zuckerkandl, E. Quoted by Prosser, C. L. & Brown, F. A. in Comparative Animal Physiology, 1961, 688 pp. Philadelphia: Saunders.Google Scholar