No CrossRef data available.
Article contents
ON K-STABILITY OF CALABI-YAU FIBRATIONS
Published online by Cambridge University Press: 19 March 2025
Abstract
We show that Calabi–Yau fibrations over curves are uniformly K-stable in an adiabatic sense if and only if the base curves are K-stable in the log-twisted sense. Moreover, we prove that there are cscK metrics for such fibrations when the total spaces are smooth.
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press
References
Abban, J, Zhuang, Z (2022) K–stability of Fano varieties via admissible flags. Forum Math. Pi 10, 1–43.CrossRefGoogle Scholar
Alper, J, Blum, H, Halpern-Leistner, D, Xu, C (2020) Reductivity of the automorphism group of K-polystable Fano varieties. Invent. Math. 222, 995–1032.CrossRefGoogle Scholar
Ambro, F (2005) The moduli b-divisor of an lc-trivial fibration. Compos. Math. (2) 141, 385–403.CrossRefGoogle Scholar
Andreatta, M (2001) Actions of linear algebraic groups on projective manifolds and minimal model program. Osaka J. Math. (1) 38, 151–166.Google Scholar
Barth, W, Hulek, K, Peters, C, Van de Ven, A (2004) Compact Complex Surfaces, second edn. Springer-Verlag.CrossRefGoogle Scholar
Berman, RJ, Darvas, T, Lu, CH (2020) Regularity of weak minimizers of the K-energy and applications to properness and K-stability. Ann. Sci. Ec. Norm. Super. (4) 53, 267–289.CrossRefGoogle Scholar
Birkar, C (2012) Existence of log canonical flips and a special LMMP. Publ. Math. Inst. Hautes Études Sci. 115, 325–368.CrossRefGoogle Scholar
Birkar, C, Cascini, P, Hacon, C, McKernan, J (2010) Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. (2) 23, 405–468.CrossRefGoogle Scholar
Blum, H, Jonsson, M (2020) Thresholds, valuations, and K-stability. Adv. Math. 365.CrossRefGoogle Scholar
Blum, H, Liu, Y, Xu, C (2022) Openness of K-semistability for Fano varieties. Duke Math. J. (13) 171, 2753–2797
Google Scholar
Blum, H, Liu, Y, Xu, C (2022) Optimal destabilization of K-unstable Fano varieties via stability thresholds. Geom. Topol. 26, 2507–2564
CrossRefGoogle Scholar
Boucksom, S, Hisamoto, T, Jonsson, M (2017) Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs. Ann. Inst. Fourier (Grenoble) (2) 67, 743–841.CrossRefGoogle Scholar
Chen, G (2021) The J-equation and the supercritical deformed Hermitian-Yang–Mills equation. Invent. Math. 225, 529–602.CrossRefGoogle Scholar
Chen, XX, Donaldson, SK, Sun, S (2015) Kähler–Einstein metrics on Fano manifolds. I-III. J. Amer. Math. Soc. 28 (2015), 183–197, 199–234, 235–278.CrossRefGoogle Scholar
Chen, XX, Cheng, J (2021) On the constant scalar curvature Kähler metrics (II), existence results. J. Amer. Math. Soc. 34, 937–1009.CrossRefGoogle Scholar
Cossec, FR, Dolgachev, IV (1989) Enriques Surfaces I. Progress in Mathematics 76. Birkhäuser.CrossRefGoogle Scholar
Datar, V, Pingali, V (2021) A numerical criterion for generalised Monge–Ampère equations on projective manifolds. Geom. Funct. Anal. 31, 767–814.CrossRefGoogle Scholar
Dervan, R (2016) Alpha invariants and coercivity of the Mabuchi functional on Fano manifolds. Ann. Fac. Sci. Toulouse (4) 25, 919–934.CrossRefGoogle Scholar
Dervan, R (2016) Uniform stability of twisted constant scalar curvature Kähler metrics. Int. Math. Res. Not. IMRN 15, 4728–4783.CrossRefGoogle Scholar
Dervan, R, Ross, J (2019) Stable maps in higher dimensions. Math. Ann. 374, 1033–1073.CrossRefGoogle Scholar
Dervan, R, Sektnan, LM (2021) Optimal symplectic connections on holomorphic submersions. Comm. Pure Appl. Math. (10) 74, 2132–2184.CrossRefGoogle Scholar
Dervan, R, Sektnan, LM (2021) Moduli theory, stability of fibrations and optimal symplectic connections. Geom. Topol. 25, 2643–2697.CrossRefGoogle Scholar
Donaldson, SK (2001) Scalar curvature and projective embeddings I. J. Differential Geom. (3) 59, 479–522.Google Scholar
Donaldson, SK (2002) Scalar curvature and stability of toric varieties. J. Differential Geom. (2) 62, 289–349.Google Scholar
Fine, J (2004) Constant scalar curvature Kähler metrics on fiberd complex surfaces. J. Differential Geom. (3) 68, 397–432.Google Scholar
Fine, J (2007) Fibrations with constant scalar curvature Kahler metrics and the CM-line bundle. Math. Res. Lett. (2) 14, 239–247.CrossRefGoogle Scholar
Floris, E, Lazić, V (2020) A Travel Guide to the Canonical Bundle Formula, pp. 37–55. Colombo, E., Fantechi, B., Frediani, P., Iacono, D. and Pardini, R., eds., Birational Geometry and Moduli Spaces Springer INdAM Series 39. Springer,Google Scholar
Friedman, R, Morgan, JW (1991) Smooth Four-Manifolds and Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge. 27. Springer.Google Scholar
Fujino, O (2011) Semi-stable minimal model program for varieties with trivial canonical divisor. Proc. Japan Acad. Ser. A Math. Sci. (3) 87, 25–30.Google Scholar
Fujino, O (2012) Basepoint-free theorems: saturation,
$b$
-divisors, and canonical bundle formula. Algebra Number Theory (4) 6, 797–823.CrossRefGoogle Scholar

Fujino, O (2017) Foundations of the Minimal Model Program. MSJ Mem. 35. Mathematical Society of Japan.Google Scholar
Fujino, O, Gongyo, Y (2014) On the moduli b-divisors of lc-trivial fibrations. Ann. Inst. Fourier (Grenoble) (4) 64, 1721–1735.CrossRefGoogle Scholar
Fujino, O, Mori, S (2000) A canonical bundle formula. J. Differential Geom. (1) 56, 167–188.Google Scholar
Fujita, K (2018) Optimal bounds for the volumes of Kähler–Einstein Fano manifolds. Amer. J. Math., (2) 140, 391–414.CrossRefGoogle Scholar
Fujita, K (2019) A valuative criterion for uniform K-stability of
$\mathbb{Q}$
-Fano varieties. J. Reine Angew. Math. 751, 309–338.CrossRefGoogle Scholar

Fujita, K (2019) Uniform K-stability and plt blowups of log Fano pairs. Kyoto J. Math. (2) 59, 399–418.Google Scholar
Fujita, K, Odaka, Y (2018) On the K-stability of Fano varieties and anticanonical divisors. Tohoku Math. J. (4) 70, 511–521.Google Scholar
Grothendieck, A, Dieudonné, JA (1964) Eléments de Géométrie Algébrique IV. Publ. Math. Inst. Hautes Études Sci. 20, 5–259, 24 (1965), 5–231, 28 (1966), 5–255, 32 (1967), 5–361.CrossRefGoogle Scholar
Hacon, C, Xu, C (2013) Existence of log canonical closures. Invent. Math. 192, 161–195.CrossRefGoogle Scholar
Hashizume, K, Hattori, M On boundedness and moduli spaces of K-stable Calabi–Yau fibrations over curves. arXiv:2305.01244. To appear in Geom. and Topol.Google Scholar
Hattori, M A decomposition formula for J-stability and its applications. arXiv:2103.04603. To appear in Michigan Math. J.Google Scholar
Hattori, M (2024) Minimizing CM degree and specially K-stable varieties. Int. Math. Res. Not. IMRN (7) 2024, 5728–5772.CrossRefGoogle Scholar
Hattori, M (2024) On fibration stability after Dervan–Sektnan and singularities. Osaka J. Math. (2) 61, 195–228
Google Scholar
Jian, W, Shi, Y, Song, J (2019) A remark on constant scalar curvature Kähler metrics on minimal models. Proc. Amer. Math. Soc. 147, 3507–3513.CrossRefGoogle Scholar
Kempf, G, Knudsen, F, Mumford, D, Saint-Donat, B (1973) Toroidal Embeddings. I. Lecture Notes in Mathematics, Vol. 339. Berlin-New York: Springer-Verlag.CrossRefGoogle Scholar
Kollár, J (2007) Lectures on Resolution of Singularities, (AM-166). Princeton University Press.Google Scholar
Kollár, J (2015) Singularities of the Minimal Model Program. Cambridge Tracts in Mathematics 200. Cambridge University Press
Google Scholar
Kollár, J, Mori, S (1998) Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics 134. Cambridge University Press.CrossRefGoogle Scholar
Lazarsfeld, R (2004) Positivity in Algebraic Geometry. I. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer.CrossRefGoogle Scholar
Lai, CJ (2011) Varieties fibered by good minimal models. Math. Ann. 350, 533–547.CrossRefGoogle Scholar
Li, C (2015) Remarks on logarithmic K-stability. Commun. Contemp. Math. (2) 17.CrossRefGoogle Scholar
Li, C (2017) K-semistability is equivariant volume minimization. Duke Math. J. (16) 166, 3147–3218.Google Scholar
Li, C (2022) Geodesic rays and stability in the cscK problem. Ann. Sci. Éc. Norm. Supér. (6) 55, 1529–1574.CrossRefGoogle Scholar
Li, C, Xu, C (2014) Special test configuration and K-stability of Fano varieties. Ann. of Math. (1) 180, 197–232.CrossRefGoogle Scholar
Liu, Y, Xu, C, Zhuang, Z (2022) Finite generation for valuations computing stability thresholds and applications to K-stability. Ann. of Math. 196, 507–566.CrossRefGoogle Scholar
Miranda, R (1980) Stability of pencils of cubic curves. Amer. J. Math. (6) 102, 1177–1202.CrossRefGoogle Scholar
Miranda, R (1981) The moduli of Weierstrass fibrations over
${\mathbb{P}}^1$
. Math. Ann. (3) 255, 379–394.CrossRefGoogle Scholar

Miranda, R (1983) Projectively unstable elliptic surfaces. Illinois J. Math. (3) 27, 404–420.Google Scholar
Mumford, D, Fogarty, J, Kirwan, F (1994) Geometric Invariant Theory, 3rd. edn. Ergebnisse der Mathematik und ihrer Grenzgebiete, 34. Springer-Verlag.CrossRefGoogle Scholar
Odaka, Y (2010) On the GIT stability of polarized varieties. Proceeding of Kinosaki Algebraic Geometry Symposium 2010.Google Scholar
Odaka, Y (2012) The Calabi conjecture and K-stability. Int. Math Res. Not. IMRN (10) 2012, 2272–2288.Google Scholar
Odaka, Y (2013) A generalization of the Ross–Thomas slope theory. Osaka J. Math. (1) 50, 171–185.Google Scholar
Odaka, Y (2013) The GIT stability of polarized varieties via discrepancy. Ann. of Math. 177, 645–661.CrossRefGoogle Scholar
Odaka, Y, Sano, Y (2013) Alpha invariant and K-stability of
$\mathbb{Q}$
-Fano varieties. Adv. Math. 229, 2818–2834.CrossRefGoogle Scholar

Odaka, Y, Sun, S (2015) Testing log K-stability by blowing up formalism. Ann. Fac. Sci. Toulouse Math. (3) 24, 505–522.CrossRefGoogle Scholar
Odaka, Y, Xu, C (2012) Log-canonical models of singular pairs and its applications. Math. Res. Lett. (2) 19, 325–334.CrossRefGoogle Scholar
Ortu, A (2023) Optimal symplectic connections and deformations of holomorphic submersions. Adv. Math. 414.CrossRefGoogle Scholar
Ross, J, Thomas, R (2007) A study of the Hilbert–Mumford criterion for the stability of projective varieties. J. Algebraic Geom. 16, 201–255.CrossRefGoogle Scholar
Sjöström Dyrefelt, Z (2022) Existence of cscK metrics on smooth minimal models. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XXIII, 223–232.Google Scholar
Song, J, Weinkove, B (2008) On the convergence and singularities of the J-flow with applications to the Mabuchi energy. Comm. Pure Appl. Math. (2) 61, 210–229.CrossRefGoogle Scholar
Takayama, S (2008) On uniruled degenerations of algebraic varieties with trivial canonical divisor. Math. Z. 259, 487–501.CrossRefGoogle Scholar
Tian, G (1987) On Kähler–Einstein metrics on certain Kähler manifolds with
${C}_1(M)>0$
. Invent. Math. 89, 225–246.CrossRef0$+.+Invent.+Math.+89,+225–246.>Google Scholar

Tian, G (1990) On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. (1) 101, 101–172.CrossRefGoogle Scholar
Tian, G (1997) Kähler–Einstein metrics with positive scalar curvature. Invent. Math. (1) 130, 1–37.CrossRefGoogle Scholar
Tian, G (2015) K-stability and Kähler–Einstein metrics. Comm. Pure Appl. Math. 68, 1085–1156.CrossRefGoogle Scholar
Zhang, K (2021) Continuity of delta invariants and twisted Kähler–Einstein metrics. Adv. Math. 388.CrossRefGoogle Scholar
Zhang, K (2024) A quantization proof of the uniform Yau–Tian–Donaldson conjecture. J. Eur. Math. Soc. (12) 26, 4763–4778.CrossRefGoogle Scholar