Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T07:46:37.195Z Has data issue: false hasContentIssue false

HOW INFLUENTIAL WAS MECHANICS IN THE DEVELOPMENT OF NEOCLASSICAL ECONOMICS? A SMALL EXAMPLE OF A LARGE QUESTION

Published online by Cambridge University Press:  15 December 2010

Abstract

It is well known that classical mechanics played a significant role in the thought of several major economists in the neoclassical tradition from the 1860s to the 1910s. Less well studied are the particular parts or features of mechanics that exercised this influence, or the depth and extent of the impact. After outlining the main traditions of mechanics and the calculus, and describing types of analogy between theories in general, I review some main pertinent features of the work of eight neoclassical economists from the 1830s to the 1910s. I argue that the influence took various forms but that in practice it was modest. Then I briefly describe a fresh set of possible influences with the development of dynamical systems in the period 1920–1950, where again the role of mechanics was limited. I end by raising a large question: does economics need some mathematics designed for its own purposes rather than that traditionally obtained by analogizing from mechanics and physics?

Type
Research Articles
Copyright
Copyright © The History of Economics Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alberts, Gerard. 1998. Jaren Van Berekening: Toepassingsgerichte Initiatieven in De Nederlandse Wiskundebeoefening 1945–1960. Amsterdam: Amsterdam University Press.CrossRefGoogle Scholar
Allen, Robert L. 1993. Irving Fisher. A Biography. Oxford: Blackwells.Google Scholar
Ambirajan, S. 1995. “The Delayed Emergence of Econometrics as a Separate Discipline.” In Rima, , ed., Measurement, Quantification and Economic Analysis, ch. 11.Google Scholar
Aspromourgos, Tony. 1986. “On the Origins of the Term ‘Neoclassical’.” Cambridge Journal of Economics 10: 265270.CrossRefGoogle Scholar
Aubin, David, and Dalmedico, Amy Dahan. 2002. “Writing the History of Dynamical Systems and Chaos: Longue Durée and Revolution, Disciplines and Culture.” Historia Mathematica 29: 273339.CrossRefGoogle Scholar
Baumol, William J., and Goldfeld, Stephen M., eds. 1968. Precursors in Mathematical Economics: An Anthology. London: London School of Economics and Political Science.Google Scholar
Bausor, Randall. 1994. “Qualitative Dynamics in Economics and Fluid Mechanics: A Comparison of Recent Applications.” In Mirowski, , ed., Natural Images in Economic Thought, pp. 109127.CrossRefGoogle Scholar
Bausor, Randall. 1995. “Liapunov Functions in Economic Dynamics and Classical Thermodynamics.” In Rima, , ed., Measurement, Quantification and Economic Analysis, ch. 22.Google Scholar
Baxley, John V., and Moorhouse, John C. 1984. “Lagrange Multiplier Problems in Economics.” American Mathematical Monthly 91: 404412.CrossRefGoogle Scholar
Bharadwaj, Krishna. 1972. “Marshall on Pigou’s Wealth and Welfare.” Economica n.s., 39: 3246.CrossRefGoogle Scholar
Birner, Jack. 1995. “Is the Past Really Not What it Used to Be?” Working paper, University of Maastricht and University of Trento.Google Scholar
Bitterman, Henry J. 1940. “Adam Smith’s Empiricism and the Law of Nature.” Journal of Political Economy 48: 487520; 703–734.CrossRefGoogle Scholar
Blaug, Mark. 1968. Economic Theory in Retrospect. Second edition. London: Heinemann.Google Scholar
Boumans, Marcel. 1993. “Paul Ehrenfest and Jan Tinbergen: A Case of Limited Physics Transfer.” In de Marchi, , ed., Non-Natural Social Science: Reflecting on the Enterprise of More Heat Than Light, as History of Political Economy 25, Suppl.: 131156.Google Scholar
Boumans, Marcel. 2001. “Fisher’s Instrumental Approach to Index Numbers.” History of Political Economy 33, Suppl.: 313344.CrossRefGoogle Scholar
Boumans, Marcel. 2004. “Models in Economics.” In Davis, , et al. eds., The Elgar Companion to Economics and Philosophy, pp. 260282.Google Scholar
Boumans, Marcel. 2005. How Economists Model the World into Numbers. London: Routledge.Google Scholar
Boyle, David. 2000. The Tyranny of Numbers. Why Counting Can’t Make Us Happy. London: Harper Collins.Google Scholar
Brown, E. Cary, and Solow, Robert M., eds. 1983. Paul Samuelson and Modern Economics Theory. New York: McGraw Hill.Google Scholar
Brownlie, A. D., and Lloyd Prichard, Muriel F.. 1963. “Professor Fleeming Jenkin, 1833–1885. Pioneer in Engineering and Political Economy.” Oxford Economic Papers n.s. (15) 204216.CrossRefGoogle Scholar
Bruni, Luigino. 2002. Vilfredo Pareto and the Birth of Modern Microeconomics. Cheltenham: Edward Elgar.CrossRefGoogle Scholar
Brush, Stephen G. 1967. “Thermodynamics and History.” The Graduate Journal 7: 477565.Google Scholar
Brush, Stephen G. 1976. The Kind of Motion We Call Heat. A History of the Kinetic Theory of Gases in the 19th Century. Two volumes. Amsterdam: North Holland.Google Scholar
Byron, Michael, ed. 2004. Satisficing and Maximizing: Moral Theorists on Practical Reason. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Caramalho Domingues, J. 2008. The Calculus and Lacroix. Basel: Birkhäuser.CrossRefGoogle Scholar
Carlile, W. W. 1904. Economic Method and Economic Fallacies. London: Edward Arnold.Google Scholar
Cass, David, and Shell, Karl. 1976. “Introduction to Hamiltonian Dynamics in Economics.” Journal of Economic Theory 12: 110.CrossRefGoogle Scholar
Cookson, Gillian, and Hempstead, Colin A. 2000. A Victorian Scientist and Engineer. Fleeming Jenkin and the Birth of Electrical Engineering. Aldershot: Ashgate.Google Scholar
Cohen, I. Bernard. 1994. “Newton and the Social Sciences, with a Special Reference to Economics, Or, the Case of The Missing Paradigm.” In Mirowski, , ed., Natural Images in Economic Thought, pp. 5590.CrossRefGoogle Scholar
Cournot, Antoine A. 1838. Recherches sur les principes mathématiques sur la théorie des richesses. Paris: Hachette. (Oeuvres complètes, vol. 8.)Google Scholar
Cournot, Antoine A. 1841. Traité élémentaire de la théorie des functions et du calcul infinitesimal. First edition, two volumes. Paris: Hachette. (Oeuvres complètes, vol. 6., 2nd ed. 1857.)Google Scholar
Cournot, Antoine A. 1843. Exposition de la théorie des chances et des probabilities. Paris: Hachette. (Oeuvres complètes, vol. 1.)Google Scholar
Cournot, Antoine A. 1863. Principes de la théorie des richesses. Paris: Hachette. (Oeuvres complètes, vol. 9: cited here.)Google Scholar
Cournot, Antoine A. 1913. Souvenirs (1760–1860), ed. Bottinelli, E. P.. Paris: Hachette.Google Scholar
D’Agostino, Salvo, and Petruccioli, Sandro, eds. 1985. “Mathematical Models and Physical Theories.” Rendiconti dell’ Accademia del XL 5 (9, pt. 2), 471 pp.Google Scholar
Dalmedico, Amy Dahan. 1994. “La renaissance des systèmes dynamiques aux États-Unis après la Deuxième Guerre Mondiale; les actions de Solomon Lefschetz.” Rendiconti del Circolo Matematico di Palermo 2 (34), Suppl.: 133166.Google Scholar
Dantzig, George B. 1982. “Reminiscences About the Origins of Linear Programming.” Operations Research Letters 1: 4348. (Slightly revised version in A. Bachem, M. Grotschel, and B. Corte, eds., Mathematical Programming. The State of the Art. Berlin: Springer, 1983, pp. 78–86.)CrossRefGoogle Scholar
Darrigol, Olivier. 2002. “Between Hydrodynamics and Elasticity Theory: The First Five Births of the Navier–Stokes Equation.” Archive for History of Exact Sciences 56: 95150.CrossRefGoogle Scholar
Darrigol, Olivier. 2005. Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl. Oxford: Oxford University Press.CrossRefGoogle Scholar
Davis, John B., Marciano, Alain, and Runde, Jochen, eds. 2004. The Elgar Companion to Economics and Philosophy. Cheltenham: Edward Elgar.CrossRefGoogle Scholar
De Marchi, Neil, ed. 1993. Non-Natural Social Science: Reflecting on the Enterprise of More Heat Than Light, as History of Political Economy 25, Suppl.Google Scholar
Dilworth, C. 1994. Scientific Progress. A Study Concerning the Nature of the Relation between Successive Scientific Theories. Third edition. Dordrecht: Kluwer.Google Scholar
Dimand, Mary-Ann, and Dimand, Robert W. 1996. The History of Game Theory. Volume 1. London: Routledge.Google Scholar
Dore, Mohammed H. I. 1995. “The Impact of John Von Neumann’s Method.” In Rima, , ed., Measurement, Quantification and Economic Analysis, ch. 24.Google Scholar
Duhem, Pierre. 1906. La théorie physique: son objet, sa structure. First edition. Paris: Marcel Rivière. (English trans. of 2nd ed. [1914]: The Aim and Structure of Physical Theory. Princeton: Princeton University Press, 1954; various reprs.)Google Scholar
Edgeworth, Francis Y. 1881. Mathematical Psychics. London: Kegan Paul. (Repr. in P. Newman, ed., Mathematical Psychics and Further Papers on Political Economy, pp. 1–150.)Google Scholar
Edgeworth, Francis Y. 1889. “Points at Which Mathematical Reasoning Are Applicable to Political Economy.” Report of the British Association for the Advancement of Science (publ. 1890), pp. 671696 (cited here). Also in Nature 20: 496–509. Also in Journal of the Statistical Society 52: 538–756. (Repr. in 1925, Papers Relating to Political Economy, vol. 2, London: Macmillan, pp. 273–318; in 1996, C.R. McCann, ed., Writings in Probability …, vol. 3. Cheltenham: Edward Elgar, pp. 82–95; in 2003, P. Newman, ed., Mathematical Psychics and Further Papers on Political Economy. Oxford: Oxford University Press, pp. 278–310; and in Marchionatti, ed., Early Mathematical Economics, vol. 2, pp. 126–157.)Google Scholar
Edgeworth, Francis Y. 1891. “ La théorie mathématique de l’offre et de la demande et le coût de production.” Revue de l’économie politique 5: 1028. (Repr. in Marchionatti, ed., Early Mathematical Economics, vol. 2, 177–191 [cited here]. English trans. in 2003, P. Newman, ed., Mathematical Psychics and Further Papers on Political Economy. Oxford: Oxford University Press, pp. 311–324.)Google Scholar
Edgeworth, Francis Y. 1909. “On the Use of the Differential Calculus in Economics to Determine Conditions of Maximum Advantage.” Scientia 7: 80103. (Repr. in 1925, Papers Relating to Political Economy, vol. 2. London: Macmillan, pp. 367–386.)Google Scholar
Edgeworth, Francis Y. 1925. Papers Relating to Political Economy. Volume 2. London: Macmillan.Google Scholar
Edgeworth, Francis Y. 1996. Writings in Probability …, ed. McCann, C. R.. Volume 3. Cheltenham: Edward Elgar.Google Scholar
Edgeworth, Francis Y. 2003. Mathematical Psychics and Further Papers on Political Economy, ed. Newman, P.. Oxford: Oxford University Press.Google Scholar
Ekelund, Robert B. Jr., and , Hébert, Robert F. 1999. Secret Origins of Modern Microeconomics: Dupuit and the Engineers. Chicago: University of Chicago Press.Google Scholar
Evans, Griffith C. 1930. Mathematical Introduction to Economics. New York: McGraw Hill.Google Scholar
Evans, Griffith C. 1932. Stabilité et dynamique de la production dans l’économie politique. Paris: Gauthier-Villars.Google Scholar
Feiwel, George R., ed. 1982. Samuelson and Neoclassical Economics. Boston: Kluwer Nijhoff.CrossRefGoogle Scholar
Fisher, Franklin. 1983. Disequilibrium Foundations of Equilibrium Economics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fisher, Irving. 1892. “Mathematical Investigations in the Theory of Value and Prices.” Transactions of The Connecticut Academy of Arts and Sciences 9: 1124. (Repr. New Haven: Yale University Press, 1925; New York: Kelley, 1965.)Google Scholar
Fisher, Irving. 1897. A Brief Introduction to the Infinitesimal Calculus Designed Especially to Aid in Reading Mathematical Economics and Statistics. First edition. New York: Macmillans.Google Scholar
Fisher, Irving. 1912. Elementary Principles of Economics. New York: Macmillans.Google Scholar
Fisher, Irving. 1925. “Preface to this Reprint.” In Fisher, “Mathematical Investigations,” 1925 reprint, pp. iii–iv.Google Scholar
Fisher, Irving. 1930. “The Application of Mathematics to the Social Sciences.” Bulletin of the American Mathematical Society 36: 225243.CrossRefGoogle Scholar
Forchheimer, Philipp. 1905. “Hydraulik.” In Encyklopädie der Mathematischen Wissenschaften mit Einschluss Ihrer Anwendungen. Volume 4, pt. C, pp. 324372.Google Scholar
Franksen, Ole Immanuel, and Grattan-Guinness, Ivor. 1989. “The Earliest Contribution to Location Theory? Spatio-Economic Equilibrium with Lamé and Clapeyron, 1829.” Mathematics and Computers in Simulation 31: 195220.CrossRefGoogle Scholar
Frisch, Ragnar. 1926. “Sur un problème d’économie pure.” Norsk Matematisk Forenings Skrifter 1 (16): 140. (Repr. in Metroeconomica 9 [1957]: 79–111. English trans. in J.S. Chipman, L. Hurwicz, M.K. Richter, and H.F. Sonnenschein, eds., Preferences, Utility, and Demand. New York: Harcourt Brace Jovanovich, 1971, pp. 386–417.)Google Scholar
Frisch, Ragnar. 1933. “Propagation Problems and Impulse Problems in Dynamic Economics.” In Economic Essays in Honour of Gustav Cassel. London: Allen and Unwin, pp. 171205.Google Scholar
Goldfarb, Robert S. 1995. “If Empirical Work in Economics Is Not Severe Testing, What Is?” In Rima, , ed., Measurement, Quantification and Economic Analysis, ch. 19.Google Scholar
Goldstine, Hermann. 1980. A History of the Calculus of Variations from the 16th Through the 19th Century. New York: Springer.Google Scholar
Grattan-Guinness, Ivor. 1977. Dear Russell—Dear Jourdain. A Commentary on Russell’s Logic, Based on his Correspondence with Philip Jourdain. London: Duckworth; New York: Columbia University Press.Google Scholar
Grattan-Guinness, Ivor., ed. 1980. From the Calculus to Set Theory, 1630–1910: An Introductory History. London: Duckworth. (Repr. Princeton: Princeton University Press, 2000.)Google Scholar
Grattan-Guinness, Ivor. 1984. “Work for the Workers: Advances in Engineering Mechanics and Instruction in France, 1800–1830.” Annals of Science 41: 133.CrossRefGoogle Scholar
Grattan-Guinness, Ivor. 1987. “What Was and What Should Be the Calculus?” In Grattan-Guinness, Ivor, ed., History in Mathematics Education. Proceedings of a Workshop Held at the University of Toronto, Canada, July–August 1983. Paris: Belin, pp. 116135. (Repr. In 2009, Routes of Learning. Baltimore: Johns Hopkins University Press, ch. 13.)Google Scholar
Grattan-Guinness, Ivor. 1990a. Convolutions in French Mathematics, 1800-1840. From the Calculus and Mechanics to Mathematical Analysis and Mathematical Physics. Three volumes. Basel: Birkhäuser; Berlin: Deutscher Verlag Der Wissenschaften.Google Scholar
Grattan-Guinness, Ivor. 1990b. “The Varieties of Mechanics by 1800.” Historia Mathematica, 17: 313338.CrossRefGoogle Scholar
Grattan-Guinness, Ivor, ed. 1994a. Companion Encyclopaedia of the History and Philosophy of the Mathematical Sciences. Two volumes. (Repr. Baltimore: Johns Hopkins University Press, 2003.)Google Scholar
Grattan-Guinness, Ivor. 1994b. “‘A New Type of Question’: On the Prehistory of Linear and Non-Linear Programming, 1770–1940.” In Knobloch, E. and Rowe, D., eds., History of Modern Mathematics. Volume 3. New York: Academic Press, pp. 4389.Google Scholar
Grattan-Guinness, Ivor. 2000. The Search for Mathematical Roots, 1870–1940. Logics, Set Theories and the Foundations of Mathematics from Cantor Through Russell to Gödel. Princeton: Princeton University Press.Google Scholar
Grattan-Guinness, Ivor. 2002. “‘In Some Parts Rather Rough’: An Unknown Manuscript Version of Stanley Jevons’s General Mathematical Theory of Political Economy’ (1862).” History of Political Economy 34: 685726.CrossRefGoogle Scholar
Grattan-Guinness, Ivor., ed. 2005. Landmark Writings in Western Mathematics 1640–1940. Amsterdam: Elsevier.Google Scholar
Grattan-Guinness, Ivor. 2006a. “Cournot on Mechanics 1826–1834, Especially Using Inequalities.” Revista Brasiliera de Historia da Matematica 5: 115. (French trans.: “Cournot et la mécanique (1826-1834) et particulièrement son utilisation des inégalités.” In Martin, ed., Actualité De Cournot, pp. 69–86.)Google Scholar
Grattan-Guinness, Ivor. 2006b. “Classical Mechanics as a Formal(ised) Science.” In Loewe, B., Peckhaus, V., and Räsch, T., eds., The History of the Concept of the Formal Sciences. London: College Publications (King’s College), pp. 5168.Google Scholar
Grattan-Guinness, Ivor. 2007. “Equilibrium in Mechanics and Then in Economics, 1860–1920: A Good Source for Analogies?” In Mosini, , ed., Equilibrium in Economics, pp. 1744.Google Scholar
Grattan-Guinness, Ivor. 2008a. “Solving Wigner’s Mystery: the Reasonable (Though Perhaps Limited) Effectiveness of Mathematics in the Natural Sciences.” The Mathematical Intelligencer 30 (3): 717. (Repr. in Corroborations and criticisms: forays with the philosophy of Karl Popper, London: College Publications, 2010, ch. 12.)CrossRefGoogle Scholar
Grattan-Guinness, Ivor. 2008b. “Differential Equations and Linearity in the 19th and Early 20th Centuries.” Archives Internationales d’Histoire des Sciences 58: 343351.CrossRefGoogle Scholar
Grattan-Guinness, Ivor. 2008c. “On the Early Work of William Thomson: Mathematical Physics and Methodology in the 1840s.” In Flood, R. G., McCartney, M., and Whitaker, A., eds., Lord Kelvin: Life, Labours and Legacy. Oxford: Oxford University Press, pp. 4455; 314–316.CrossRefGoogle Scholar
Grattan-Guinness, Ivor. 2009. “On Jevons’s Handling of Differential Equations in the Context of his Principle of Exchange, and the Early Reactions.” History of Political Economy 41: 297309.CrossRefGoogle Scholar
Grattan-Guinness, Ivor. 2010. “Omnipresence, Multipresence and Ubiquity: Types of Generality in and Around Mathematics and Logics,” in preparation.CrossRefGoogle Scholar
Haas, Arthur E. 1909. Die Entwicklungsgeschichte des Satzes von der Erhaltung der Kraft. Vienna: Hölder.Google Scholar
Henderson, James P. 1994. “The Place of Economics in the Hierarchy of the Sciences: Section F from Whewell to Edgeworth.” In Mirowski, , ed., Natural Images in Economic Thought, pp. 484535.CrossRefGoogle Scholar
Henderson, James P. 1995. “Ordering Society: the Early Uses of Classification in British Statistical Organizations.” In Rima, , ed., Measurement, Quantification and Economic Analysis, ch. 3.Google Scholar
Henderson, James P. 1996. Early Mathematical Economics: William Whewell and the British Case. Lanham: Rowman & Littlefield.Google Scholar
Henshaw, John M. 2006. Does Measurement Measure Up? How Numbers Reveal and Conceal the Truth. Baltimore: Johns Hopkins University Press.CrossRefGoogle Scholar
Hewins, William A. S. 1910. “Economics.” In Encyclopaedia Britannica. Eleventh edition, volume 8. New York: Encyclopaedia Britannica, pp. 899910.Google Scholar
Hollander, S. 1983. “William Whewell and John Stuart Mill on the Methodology of Political Economy.” Studies in History and Philosophy of Science 14: 127168.CrossRefGoogle Scholar
Hoover, Kevin D., and Siegler, M. V. 2008. “Sound and Fury: McCloskey and Significance Testing in Economics.” Journal of Economic Methodology 15: 137.CrossRefGoogle Scholar
Howey, Ralph S. 1960. The Rise of the Marginal Utility School 1870–1889. Lawrence, Kansas: Kansas State University Press.Google Scholar
Hulin-Jung, Nicole. 1989. L’organisation de l’enseignement des sciences: la voie ouverte par le Second Empire. Paris: Comité des Travaux Historiques et Scientifiques.Google Scholar
Husseini, Hamid. 1990. “The Archaic, the Obsolete and the Mythical in Neoclassical Economics: Problems with the Rationality and Optimizing Assumptions of the Jevons-Marshallian System.” American Journal of Economics and Sociology 49: 8192.CrossRefGoogle Scholar
Hutchinson, Terrence. 1998. “Ultra Deductivism from Nassau Senior to Lionel Robbins and Daniel Hausman.” Journal of Economic Methodology 5: 4391.CrossRefGoogle Scholar
Ingrao, Bruna, and Israel, Giorgio. 1985. “General Economics Equilibrium Theory. A History of Ineffectual Paradigmatic Shifts.” Fundamenta Scientiae 6: 1–45; 89125.Google Scholar
Ingrao, Bruna, and Israel, Giorgio. 1990. The Invisible Hand. Economic Equilibrium in the History of Science. Cambridge, Mass.: The MIT Press.Google Scholar
Israel, Giorgio. 1996. Le mathématisation du réel. Essai sur la modélisation mathématique. Paris: Seuil.Google Scholar
Israel, Giorgio, and Millán Gasca, Ana. 2002. The Biology of Numbers. The Correspondence of Vito Volterra on Mathematical Biology. Basel: Birkhäuser.Google Scholar
Israel, Giorgio. 2009. The World as a Mathematical Game. John Von Neumann and Twentieth Century Science. Basel: Birkhäuser.CrossRefGoogle Scholar
Jahnke, Niels, ed. 2003. A History of Analysis. Providence: American Mathematical Society and London Mathematical Society.CrossRefGoogle Scholar
Jenkin, H. C. Fleeming. 1887. “Political Economy.” In Colvin, S. and Ewing, J. D., eds., Papers Literary, Scientific, etc. Volume 2. London: Longmans, Green, pp. 1154. (Repr. as The Graphic Representation of the Laws of Supply and Demand …. London: London School of Economics, 1931.)Google Scholar
Jevons, W. Stanley. 1870. “Opening Address of the President of Section F.” Report of the British Association for the Advancement of Science [1871], pt. 2, pp. 178187(cited here). Also in Journal of the Statistical Society 33: 309-326.Google Scholar
Jevons, W. Stanley. 1874. “The Progress of the Mathematical Theory of Political Economy.” Transactions of the Manchester Statistical Society 1: 119. Also in Journal of The Statistical Society 37: 478–488. (Repr. in 1981, R.D. Collinson Black, ed. Papers and Correspondence, vol. 7. London: Macmillan, pp. 75–85 [cited here]; and in Marchionatti, ed., Early Mathematical Economics, vol. 1, pp. 336–345.)Google Scholar
Jevons, W. Stanley. 1879. Theory of Political Economy. Second edition. London: Macmillan.Google Scholar
Jevons, W. Stanley. 1970. Theory of Political Economy, ed. Collison Black, R. D.. Pelican edition. Harmondsworth: Penguin.Google Scholar
Jolink, Albert. 2006. “What Went Wrong with Walras? The Econometric Transformation Process of Walrasian Economics During the 1920s and 1930s.” In Backhaus, J. G. and Maks, J. A. H., eds., From Walras to Pareto. Boston: Springer, pp. 6980.CrossRefGoogle Scholar
Jourdain, Philip E. B. 1912. The Nature of Mathematics. First edition. London: Jack; Edinburgh: Nelson.Google Scholar
Katsinelinboigen, Aron. 1992. Indeterministic Economics. New York: Praeger.Google Scholar
Kaushal, Radhey S. 2003. Structural Analogies in Understanding Nature. New Delhi: Anamaya.Google Scholar
Keita, Lance D. 1992. Science, Rationality, and Neoclassical Economics. Newark: University of Delaware Press.Google Scholar
Kesting, Peter, and Vilks, Amis. 2004. “Formalism.” In Davis, , et al. , eds., The Elgar Companion to Economics and Philosophy, pp. 283298.Google Scholar
Kirby, Maurice W. 2003. Operational Research in War and Peace. The British Experience from the 1930s to 1970. London: Imperial College Press.CrossRefGoogle Scholar
Kjeldsen, Tinne Hoff. 2000. “A Contextualised Historical Analysis of the Kuhn–Tucker Theorem in Nonlinear Programming.” Historia Mathematica 27: 331361.CrossRefGoogle Scholar
Klein, Judy L. 1997. Statistical Visions in Time: A History of Time Series Analysis, 1662–1938. Cambridge: Cambridge University Press.Google Scholar
Kolmogorov, Andrei N., and Yushkevich, Adolf P., eds. 1998. Mathematics of the 19th Century. Volume 3. Basel: Birkhäuser.CrossRefGoogle Scholar
Krüger, Lorenz, et al. , eds. 1988. The Probabilistic Revolution. Volume 2. Cambridge, Mass.: The MIT Press.Google Scholar
Kuhn, Thomas S. 1970. The Structure of Scientific Revolutions. Second edition. Chicago: University of Chicago Press.Google Scholar
Le Gall, Philippe. 2007. History of Econometrics in France. From Nature to Models. London: Routledge.CrossRefGoogle Scholar
Lenstra, Jan Karel, Rinnooy Kan, Alexander H. G., and Schrijver, Alexander. 1991. History of Mathematical Programming: A Collection of Personal Reminiscences. Amsterdam: CWI & North-Holland.Google Scholar
Leonard, Robert J. 1994. “Reading Cournot, Reading Nash: The Creation and Stabilization of the Nash Equilibrium.” Economic Journal 104: 492511.CrossRefGoogle Scholar
Lesk, Arthur M. 2000. “The Unreasonable Effectiveness of Mathematics in Molecular Biology.” The Mathematical Intelligencer 22 (2): 2836. (See also his letter in 2001, 23 [1]: 4.)CrossRefGoogle Scholar
Lützen, Jesper. 2005. Mechanistic Images in Geometric Form. Heinrich Hertz’s Principles of Mechanics. Oxford: Oxford University Press.Google Scholar
Lyapunov, Alexandr M. 1892. Ob′Shchaya Zadacha Ob′Ustoichivosti Dvizheniya [The General Problem of Stability of Motion]. Kharkov: Kharkov Mathematical Society. (Doctoral Dissertation, University of Kharkov. French trans. in 1907, Annales de la Faculté des Sciences de Toulouse 2 [9]: 203–474.)Google Scholar
Lyapunov, Alexandr M. 1897. “Sur l’instabilité de l’équilibre dans certains cas où la fonction de forces n’est pas un maximum.” Journal de mathématiques pures et appliquées 5 (3): 8194.Google Scholar
Lyapunov, Alexandr M. 1907. “Problème général de la stabilité du mouvement.” Annales de la Faculté des Sciences de Toulouse 2 (9): 203474. (Trans. of Ob′Shchaya Zadacha Ob′Ustoichivosti Dvizheniya, revised and corrected by the author, with additional note. Repr. Princeton: Princeton University Press, 1947 and 1949.)Google Scholar
Maas, Harro. 2005. William Stanley Jevons and the Making of Modern Economics. Cambridge: Cambridge University Press.Google Scholar
Magnello, M. Eileen. 1996. “Karl Pearson’s Gresham Lectures: W.F.R. Weldon, Speciation and the Origins of Pearsonian Statistics.” British Journal of the History of Science 29: 4363.CrossRefGoogle ScholarPubMed
Magnello, M. Eileen, and Hardy, Anne, eds. 2002. The Road to Medical Statistics. Amsterdam and New York: Rodopi.CrossRefGoogle Scholar
Maltese, Giulio. 1992. La storia di «F = ma». La secondo legge del moto nel XVIII secolo. Florence: Olschki.Google Scholar
Marchionatti, Roberto, ed. 2004. Early Mathematical Economics, 1871–1915. Four volumes. London: Routledge.Google Scholar
Marchionatti, Roberto. 2007. “‘On the Application of Mathematics to Political Economy’. The Edgeworth—Walras—Bortkievicz Controversy, 1889–1891.” Cambridge Journal of Economics 31: 291307.CrossRefGoogle Scholar
Marshall, Alfred. 1949. Principles of Economics. An Introductory Volume. Eighth edition reset. London: Macmillan.Google Scholar
Marshall, Alfred. 1961. Principles of Economics. An Introductory Volume, ed. Guillebaud, C. W.. Ninth edition. Two volumes. London: Macmillan.Google Scholar
Martin, Thierry, ed. 2005. Actualité De Cournot. Paris: Vrin.Google Scholar
Mawhin, Jean. 1994. “The Centennial Celebration of Poincaré and Lyapunov in Ordinary Differential Equations.” Rendiconti del Circolo Matematico di Palermo 2 (34), Suppl., pp. 946.Google Scholar
McArthur, Charles W. 1990. Operations Analysis in the U.S. Army Eighth Air Force in World War II. Providence: American Mathematical Society and London Mathematical Society.Google Scholar
McLure, Michael. 2000. Pareto, Economics and Society: The Mechanical Analogy. London and New York: Routledge.Google Scholar
Millán Gasca, Ana. 2006. Fabbriche, Sistemi, Organizzazioni. Storia Dell’Ingegneria Industriale. Milan: Springer.Google Scholar
Minowitz, Peter. 2004. “Adam Smith’s Invisible Hands.” Econ Journal Watch 1: 381412.Google Scholar
Mirowski, Philip. 1988. Against Mechanism. Protecting Economics from Science. Totowa, NJ: Rowman and Littlefield.Google Scholar
Mirowski, Philip. 1989. More Heat Than Light. Economics as Social Physics, Physics as Nature’s Economics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Mirowski, Philip, ed. 1994. Natural Images in Economic Thought. Markets Read in Tooth and Claw. New York: Cambridge University Press.CrossRefGoogle Scholar
Moore, Henry L. 1914. Economic Cycles: Their Law and Cause. New York: Macmillan.Google Scholar
Moore, Henry L. 1923. Generating Business Cycles. New York: Macmillan.Google Scholar
Morgan, Mary S. 1990. The History of Econometric Ideas. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Morgan, Mary S. 1999. “Learning from Models.” In Morgan, M. and Morrison, M., eds., Models as Mediators. Cambridge: Cambridge University Press, pp. 347388.CrossRefGoogle Scholar
Morgan, Mary S, and Boumans, Marcel. 2004. “Secrets Hidden by Two-Dimensionality: The Economy as a Hydraulic Machine.” In De Chadarevian, S. and Hopwood, N., eds., Models: the Third Dimension of Science. Stanford: Stanford University Press, pp. 369401.CrossRefGoogle Scholar
Morgenstern, Oskar. 1963. “Limits to the Uses of Mathematics in Economics.” In Charlesworth, J. C., ed., Mathematics and the Social Sciences: The Utility and Inutility of Mathematics in the Study of Economics, Political Science and Sociology. Philadelphia: American Academy of Politics and Social Science, pp. 1229.Google Scholar
Morrey, Charles B. 1983. “Griffith Conrad Evans.” Biographical Memoirs. National Academy of Science 54: 127155.Google Scholar
Mosini, Valeria, ed. 2007. Equilibrium in Economics: Scope and Limits. London: Routledge.Google Scholar
Nadal, Alejandro. 2004. “Freedom and Submission. Individuals and the Invisible Hand.” In Ackerman, F. et al. , The Flawed Foundations of General Equilibrium. London: Routledge, pp. 181201.Google Scholar
Pareto, Vilfredo. 1892. “Considerazioni sui principii fondamentali dell’eeconomia politica pura,” pt. 1. Giornale degli Economisti 2 (4): 389420. (Repr. in Oeuvres complètes, vol. 26, pp. 59–90; and in Marchionatti, ed., Early Mathematical Economics, 1871–1915, vol. 2, pp. 289–311.)Google Scholar
Pareto, Vilfredo. 1896. Cours d’économie politique. Volume 1. Lausanne: Rouge (Oeuvres complètes, vol. 1).Google Scholar
Pareto, Vilfredo. 1901. “Le nuove teorie economiche.” Giornale degli Economisti 2 (13): 235259. (Repr. in Oeuvres complètes, vol. 26, pp. 456–487 [appendix printed twice!].)Google Scholar
Pareto, Vilfredo. 1911. “Economie Mathématique.” In Encyclopédie des Sciences Mathématiques, Tome 1, vol. 4, pp. 591640. (Complete? repr. in Oeuvres complètes, vol. 7, pp. 330–391. Partial English trans. in Baumol and Goldfeld [1968], pp. 49–95.)Google Scholar
Peart, Sandra J. 1995. “Measurement in Utility Calculations: The Utilitarian Perspective.” In Rima, , ed., Measurement, Quantification and Economic Analysis, ch. 4.Google Scholar
Perlman, Mark, and McCann, Robert Jr. 1998. Pillars of Economic Understanding. Ideas and Traditions. Ann Arbor: University of Michigan Press.CrossRefGoogle Scholar
Picard, Emile. 1895–1896, 1908, 1928. Traité d’Analyse. Volume three, 1st ed., 2nd ed., 3rd ed. Paris: Gauthier-Villars.Google Scholar
Picard, Emile. 1899. “Lectures in Mathematics.” In Clark University 1889–1899. Decennial Celebration. Worcester, Mass.: Clark University, pp. 207259. (In French.)Google Scholar
Picard, Emile. 1905a. Sur le développement de l’analyse et ses rapports avec diverses sciences: conférences faites en Amérique. Paris: Gauthier-Villars.Google Scholar
Picard, Emile. 1905b. “On the Development of Mathematical Analysis, and its Relations to some other Sciences.” Science 20: 857872. Also in Mathematical Gazette 3: 173–181; 217–225. Also in 1906, H.J. Rogers, ed., International Congress of Arts and Science. Volume 2. Boston: Houghton Mifflin, pp. 497–517.CrossRefGoogle Scholar
Pigou, Arthur Cecil. 1951. “Some Aspects of Welfare Economics.” The American Economic Review 41: 287302.Google Scholar
Poinsot, Louis. 1842. Eléments de statique. Eighth edition. Paris: Bachelier.Google Scholar
Pomini, Mario, and Tusset, Gianfranco. 2009. “Habits and Expectations: Dynamic General Equilibrium in the Italian Pareto School.” History of Political Economy 41: 311342.CrossRefGoogle Scholar
Ponteil, Félix. 1966. Histoire de l’enseignement en France. Les grandes étapes 1789–1864. Paris: Sirey.Google Scholar
Popper, Karl R. 1951. “Indeterminism in Quantum Physics and in Classical Physics.” British Journal for the Philosophy of Science 1: 117133; 173–195.CrossRefGoogle Scholar
Popper, Karl R. 1982. The Open Universe. An Argument for Indeterminism. London: Hutchinson.Google Scholar
Porter, Theodore M. 1986. The Rise of Statistical Thinking, 1820–1900. Princeton: Princeton University Press.CrossRefGoogle Scholar
Puttaswamaiah, K., ed. 2002. Paul Samuelson and the Foundations of Modern Economics. New Brunswick: Transaction Publishing.Google Scholar
Rima, Ingrid H., ed. 1995a. Measurement, Quantification and Economic Analysis. Numeracy in Economics. London: Routledge.Google Scholar
Rima, Ingrid H. 1995b. “Some Conundrums about the Place of Econometrics in Economic Analysis.” In Rima, , ed., Measurement, Quantification and Economic Analysis, ch. 12.CrossRefGoogle Scholar
Roche, John J. 1998. The Mathematics of Measurement. A Critical History. London: Athlone Press.Google Scholar
Roos, Charles F. 1927. “Dynamical Economics.” Proceedings of the National Academy of Sciences 13: 145150.CrossRefGoogle ScholarPubMed
Roos, Charles F. 1934. Dynamic Economics: Theoretical and Statistical Studies of Demand, Production and Prices. Bloomington: The Principia Press.Google Scholar
Rouse, Hunter, and Ince, Simon. 1957. History of Hydraulics. Iowa City: Iowa Institute of Hydraulics Research. (Repr. New York: Dover, 1963.)Google Scholar
Roy, René. 1933. “Cournot et l’école mathématique.” Econometrica 1: 1322.CrossRefGoogle Scholar
Russell, Bertrand A. W. 1903. The Principles of Mathematics. Cambridge: Cambridge University Press. (Repr. London: Allen and Unwin, 1937.)Google Scholar
Samuelson, Paul A. 1947. Foundations of Economic Analysis. Cambridge, Mass.: Harvard University Press.Google Scholar
Schumacher, Ernst. 1973. Small Is Beautiful. A Study of Economics as if People Mattered. London: Blond and Briggs.Google Scholar
Scott, Wilson L. 1970. The Conflict Between Atomism and Conservation Theory 1644 to 1860. London: Macdonald; New York: Elsevier.Google Scholar
Screpanti, Ernesto, and Zamagni, Stefano. 1993. An Outline of the History of Economic Thought. Oxford: Clarendon Press.Google Scholar
Siegel, Daniel M. 1985. “Mechanical Image and Reality in Maxwell’s Electromagnetic Theory.” In Harman, P., ed., Wranglers and Physicists. Cambridge Physics in the Nineteenth Century. Manchester: Manchester University Press, pp. 180201.Google Scholar
Siegmund-Schultze, Reinhard. 1993. Mathematische Berichterstattung in Hitlerdeutschland. Der Niedergang des “Jahrbuch über die Fortschritte Der Mathematik.” Göttingen: Vandenhoeck und Ruprecht.Google Scholar
Siegmund-Schultze, Reinhard. 1998. “Eliakim Hastings Moore’s ‘General Analysis’.” Archive for History of Exact Sciences 52: 5189.CrossRefGoogle Scholar
Sigot, Nathalie. 2005. “La reception de l’oeuvre économique de Cournot.” In Martin, , ed., Actualité De Cournot, pp. 125149.Google Scholar
Smith, David M. 1981. Industrial Location. Second edition. New York: Wiley.Google Scholar
Stigler, George J. 1950. “The Development of Utility Theory.” Journal of Political Economy 58: 307327; 379–396. (Repr. in J.J. Spengler and W.R. Allen, eds., Essays in Economic Thought. Chicago: Rand McNally, ch. 25.)CrossRefGoogle Scholar
Stigler, Stephen M. 1982. “Jevons as Statistician.” The Manchester School 50: 354365. (Repr. in Wood, ed., William Stanley Jevons, vol. 1, pp. 369–382; and as Stigler, Statistics on the Table: The History of Statistical Concepts and Methods. Cambridge, Mass.: Harvard University Press, 1999, ch. 3.)CrossRefGoogle Scholar
Stigler, Stephen M. 1986. The History of Statistics: The Measurement of Uncertainty Before 1900, Harvard: Harvard University Press.Google Scholar
Sutton, John. 2000. Marshall’s Tendencies: What Can Economists Know? Cambridge, Mass.: The MIT Press.Google Scholar
Tanner, R. Cecily H. 1961. “Mathematics Begins with Inequality.” Mathematical Gazette 44: 292294.CrossRefGoogle Scholar
Theocharis, Reghinos D. 1993. The Development of Mathematical Economics. The Years of Transition: from Cournot to Jevons. Basingstoke: Macmillan.Google Scholar
Touffut, Jean-Philippe, ed. 2007. Augustin Cournot: Modeling Economics. Cheltenham: Edward Elgar.CrossRefGoogle Scholar
Vatin, François. 1998. Economie politique et économie naturelle chez Antoine-Augustin Cournot. Paris: Presses Universitaires de France.Google Scholar
Vatin, François. 2007a. Morale industrielle et calcul économique dans le premier XIXe siècle. Paris: l’Harmattan.Google Scholar
Vatin, François. 2007b. “Influences on the Economic Theory of Cournot: Mechanics, Physics and Biology.” In Mosini, , ed., Equilibrium in Economics, pp. 114129.Google Scholar
Veblen, Thorstein B. 1898. “Why Is Economics not an Evolutionary Science?Quarterly Journal of Economics 12: 373397. (Repr in Veblen, The Place of Science, pp. 56–82.)CrossRefGoogle Scholar
Veblen, Thorstein B. 1900. “The Preconceptions of Economic Science III.” Quarterly Journal of Economics 14: 240269. (Repr in Thorstein, The Place of Science, pp. 148–171.)CrossRefGoogle Scholar
Veblen, Thorstein B. 1919. The Place of Science in Modern Civilisation and Other Essays. New York: Huebsch.Google Scholar
Velupillai, K. Vela. 2005. “The Unreasonable Ineffectiveness of Mathematics in Economics.” Cambridge Journal of Economics 29: 849872.CrossRefGoogle Scholar
Vemija, Shoichiro. 1981. “Jevons and Fleeming Jenkin.” Kobe University Economic Review 27: 4557. (Repr in Wood, ed., William Stanley Jevons, vol. 3, pp. 174–188.)Google Scholar
Von Neumann, John, and Morgenstern, Oskar. 1944. The Theory of Games and Economic Behavior. First edition. Princeton: Princeton University Press.Google Scholar
Walker, Donald A. 1984. “Is Walras’s Theory of General Equilibrium a Normative Scheme?History of Political Economy, 16: 446469. (Repr. in Walker, Donald A., ed. 2001. The Legacy of Léon Walras. Volume 1. Cheltenham: Edward Elgar, pp. 55–80.)CrossRefGoogle Scholar
Walker, Donald A, ed. 2000. Equilibrium. Three volumes. Cheltenham: Edward Elgar.Google Scholar
Walker, Donald A. 2006. Walrasian Economics, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Wallace, William A. 1974. Causality and Scientific Explanation. Volume 2. Washington, DC: University Press of America.Google Scholar
Walras, Léon. 1909. “Economique et Mécanique.” Bulletin de la Société Vaudoise des Sciences Naturelles 15: 313325. (Repr. in Metroeconomica 12 (1960): 3–11; and in Oeuvres économiques complètes, vol. 7, pp. 330–341.)Google Scholar
Walras, Léon. 1992. Etudes d’économie politique appliquée. Paris: Economica (Oeuvres économiques complètes, vol. 10). (Original 1st ed. 1898.)Google Scholar
Walras, Léon. 1995. Théorie mathématique de la richesse sociale et autres écrits d’économie pure. Paris: Economica (Oeuvres économiques complètes, vol. 11). (Original 1st ed. 1883.)Google Scholar
Walras, Léon. 1998. Eléments d’économie politique pure ou théorie de la richesse sociale. Paris: Economica (Oeuvres économiques complètes, vol. 8 [largely following the “Definitive” ed., Paris: Pichon, 1926]).Google Scholar
Walras, Léon. 2005. Tables et index. Paris: Economica (Oeuvres économiques complètes, vol. 14).Google Scholar
Ward, Benjamin. 1972. What’s Wrong with Economics? London: Macmillan.CrossRefGoogle Scholar
Warwick, Andrew. 2003. Masters of Theory. Cambridge and the Rise of Mathematical Physics. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Waterman, Anthony M. C. 2003. “Mathematical Modeling as an Exegetical Tool.” In Samuels, W. J., Biddle, J. E., and Davis, J. B., eds. A Companion to the History of Economic Thought. Malden, Mass: Blackwell, pp. 553570.CrossRefGoogle Scholar
Weintraub, E. Roy. 1991. Stabilizing Dynamics. Constructing Economic Knowledge. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Weintraub, E. Roy., ed. 1992. Toward a History of Game Theory, as History of Political Economy 24, Suppl.Google Scholar
Weintraub, E. Roy. 2002. How Economics Became a Mathematical Science. Durham, NC, and London: Duke University Press.Google Scholar
White, Mike. 2004. “A Grin Without a Cat: W.S. Jevons, Elusive Equilibrium.” In Aspromourgos, T. and Lodewijks, J., eds. History and Political Economy. Essays In Honour of P.D. Groenewegen. London: Routledge, pp. 97117.CrossRefGoogle Scholar
White, Mike. 2005. “Breaking New Ground: The Significance of W.S. Jevons’ Rent Theory.” History of Economics Review 41: 142156.CrossRefGoogle Scholar
Wise, Norton. 1981. “The Flow Analogy to Electricity and Magnetism.” Archive for History of Exact Sciences 25: 1970.CrossRefGoogle Scholar
Wood, J. Cunningham, ed. 1988. William Stanley Jevons. Critical Assessments. Three volumes. London: Routledge.Google Scholar
Wulwick, Nancy J. 1995. “The Hamiltonian Formalism and Optimal Growth Theory.” In Rima, , ed., Measurement, Quantification and Economic Analysis, ch. 23.Google Scholar
Zienkiewicz, Olek C., Taylor, Robert Leroy, and Zhu, Jiang Z.. 2005. The Finite Element Method: Its Basis and Fundamentals. Sixth edition. Amsterdam: Elsevier.Google Scholar