Article contents
A VARIATIONAL APPROACH FOR ONE-DIMENSIONAL PRESCRIBED MEAN CURVATURE PROBLEMS
Published online by Cambridge University Press: 25 July 2014
Abstract
We discuss the multiplicity of nonnegative solutions of a parametric one-dimensional mean curvature problem. Our main effort here is to describe the configuration of the limits of a certain function, depending on the potential at zero, that yield, for certain values of the parameter, the existence of infinitely many weak nonnegative and nontrivial solutions. Moreover, thanks to a classical regularity result due to Lieberman, this sequence of solutions strongly converges to zero in $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}C^1([0,1])$. Our approach is based on recent variational methods.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © 2014 Australian Mathematical Publishing Association Inc.
References
- 2
- Cited by