No CrossRef data available.
Article contents
Time-dependent Lipschitz attractors for non-semigroup evolution processes
Published online by Cambridge University Press: 09 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
A maximality principle on quasi-ordered pseudo-metric spaces is used to obtain a number of Lipschitz attraction results for non-semigroup evolution processes with respect to time-dependent families. As particular cases, a multivalued version of Dieudonné's means value theorem and the Kirk-Ray lipschitzianness test are derived.
Keywords
- Type
- Research Article
- Information
- Journal of the Australian Mathematical Society , Volume 38 , Issue 1 , February 1985 , pp. 103 - 117
- Copyright
- Copyright © Australian Mathematical Society 1985
References
[1]Altman, M., ‘Contractor directions, directional contractors and directional contractions for solving equations’, Pacific J. Math. 62, 1–18, (1976).Google Scholar
[2]Bhatia, N. P. and Szegö, G. P., Stabilily theory of dynamical systems, (Springer-Verlag, Berlin, 1970).Google Scholar
[3]Bourbaki, N., Eléments de mathématiques. Livre IV (Fonctions d'une variable réele), Chs. I–III, 2iéme ed. (Hermann, Paris, 1958).Google Scholar
[4]Brézis, H., ‘On a characterization of flow-invariant sets’, Comm. Pure Appl. Math. 23, 261–263, (1970).Google Scholar
[5]Brézis, H. and Browder, F. E., ‘A general principle on ordered sets in nonlinear functional analysis’, Advances in Math. 21, 355–365, (1976).Google Scholar
[6]Brøndsted, A., ‘On a lemma of Bishop and Phelps’, Pacific J. Math. 55, 335–341, (1974).Google Scholar
[7]Brøndsted, A., ‘Fixed points and partial orders’, Proc. Amer. Math. Soc. 60, 365–366, (1976).Google Scholar
[8]Browder, F. E., ‘On a theorem of Caristi and Kirk’, Fixed point theory and its applications, pp. 23–27 (Academic Press, New York, 1976).Google Scholar
[9]Caristi, J., ‘Fixed point theorems for mapping satisfying inwardness conditions’, Trans. Amer. Math. Soc. 215, 241–251, (1976).CrossRefGoogle Scholar
[10]Clarke, F. H., ‘Pointwise contraction criteria for the existence of fixed points’, Canad. Math. Bull. 21, 7–11, (1978).Google Scholar
[12]Ekeland, I., ‘Nonconvex minimization problems’, Bull. Amer. Math. Soc. (N.S.) 1, 443–474, (1979).Google Scholar
[13]Husain, S. A. and Sehgal, V. M., ‘A remark on a fixed point theorem of Caristi’, Math. Japonica 25, 27–30, (1980).Google Scholar
[14]Kasahara, S., ‘On fixed points in partially ordered sets and Kirk-Caristi theorem’, Math. Sem. Notes Kobe Univ. 3, 229–232, (1975).Google Scholar
[15]Kirk, W. A., ‘Caristi's fixed point theorem and metric convexity’, Colloq. Math. 36, 81–86, (1976).Google Scholar
[16]Kirk, W. A. and Ray, W. O., ‘A remark on directional contractions’, Proc. Amer. Math. Soc. 66, 279–283, (1977).Google Scholar
[17]Kirk, W. A. and Ray, W. O., ‘A note on Lipschitzian mappings on convex metric spaces’, Canad. Math. Bull. 20, 463–466, (1977).Google Scholar
[18]Nadler, S. B. Jr, ‘Multivalued contraction mappings’, Pacific J. Math. 30, 475–488, (1969).Google Scholar
[19]Pasicki, L., ‘A short proof of the Caristi theorem’, Comment. Math. Univ. Carolin. 20, 427–428, (1978).Google Scholar
[20]Siegel, J., ‘A new proof of Caristi's fixed point theorem’, Proc. Amer. Math. Soc. 66, 54–56, (1977).Google Scholar
[21]Turinici, M., ‘Flow-invariance theorems via maximal element techniques’, Nederl. Akad. Wetensch. Proc. Ser. A 84, 445–457, (1981).Google Scholar
[22]Turinici, M., ‘Stability criteria for contractive semigroups via maximality procedures’, Bull. Austral. Math. Soc. 24, 453–469, (1981).Google Scholar
[23]Turinici, M., ‘Multivalued contractions and applications to functional differential equations’, Acta Math. Acad. Sci. Hungar. 37, 147–151, (1981).Google Scholar
[24]Turinici, M., ‘Function Lipschitzian mappings on Banach spaces and applications’, Rev. Roum. Math. Pures Appl. 27, 211–217, (1982).Google Scholar
[25]Turinici, M., ‘Constant and variable drop theorems on metrizable locally convex spaces’, Comment. Math. Univ. Carolin. 23, 383–398, (1982).Google Scholar
[26]Turinici, M., ‘Mean value theorems via maximal element techniques’, J. Math. Anal. Appl. 88, 48–60, (1982).CrossRefGoogle Scholar
[27]Turinici, M., ‘Differential inequalities on abstract metric spaces’, Funkcial. Ekvac. 25, 227–242, (1982).Google Scholar
[28]Wong, C. S., ‘On a fixed point theorem of contractive type’, Proc. Amer. Math. Soc. 57, 283–284, (1976).CrossRefGoogle Scholar
You have
Access