Article contents
Stone algebras form an equational class: (Remarks on Lattice Theory III)
Published online by Cambridge University Press: 09 April 2009
Extract
To prove the statement given in the title take a set Σ1 of identities characterizing distributive lattices 〈L; ∨, ∧, 0, 1〉 with 0 and 1, and let Then is Σ redundant set of identities characterizing Stone algebras
= 〈L; ∨, ∧, *, 0, 1〉. To show that we only have to verify that for a ∈ L, a* is the pseudo-complement of a. Indeed, a ∧ a* 0; now, if a ∧ x = 0, then a* ∨ x* 0* = 1, and a** ∧ = 1* = 0; since a** is the complement of a*, the last identity implies x** ≦ a*, thus x ≦ x** ≦ a*, which was to be proved.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1969
References
- 9
- Cited by