Published online by Cambridge University Press: 09 April 2009
To prove the statement given in the title take a set Σ1 of identities characterizing distributive lattices 〈L; ∨, ∧, 0, 1〉 with 0 and 1, and let Then is Σ redundant set of identities characterizing Stone algebras = 〈L; ∨, ∧, *, 0, 1〉. To show that we only have to verify that for a ∈ L, a* is the pseudo-complement of a. Indeed, a ∧ a* 0; now, if a ∧ x = 0, then a* ∨ x* 0* = 1, and a** ∧ = 1* = 0; since a** is the complement of a*, the last identity implies x** ≦ a*, thus x ≦ x** ≦ a*, which was to be proved.