Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T21:04:59.487Z Has data issue: false hasContentIssue false

Simultaneous approximation of numbers connected with the exponential function

Published online by Cambridge University Press:  09 April 2009

Michel Waldschmidt
Affiliation:
Université P. et M. Curie(Paris VI) Mathématiques, T45-46 4 Place Jussieu 75230 Paris Cedex 05, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give several results concerning the simultaneous approximation of certain complex numbers. For instance, we give lower bounds for |a–ξo |+ | ea – ξ1 |, where a is any non-zero complex number, and ξ are two algebraic numbers. We also improve the estimate of the so-called Franklin Schneider theorem concerning | b – ξ | + | a – ξ | + | ab – ξ. We deduce these results from an estimate for linear forms in logarithms.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1978

References

[Ba]Baker, A. (1977), “The theory of linear forms in logarithms”, in: Transcendence Theory; Advances and Applications, edited by Baker, A. and Masser, D. W. (Academic Press, New York). Chap. 1, pp. 127.Google Scholar
[Bi]Bijlsma, A. (1978), On the Simultaneous Approximation of a, b and ab (Thesis, Amsterdam). Math. Center Tracts no. 94.Google Scholar
[C]Cijsouw, P. L. (1975), “On the simultaneous approximation of certain numbers”, Duke Math. J. 42, 249257.CrossRefGoogle Scholar
[C-W]Cijsouw, P. L. and Waldschmidt, M. (1977), “Linear forms and simultaneous approximations”, Compositio Math. 34, 173197.Google Scholar
[L]Laurent, M. (1977), Indépendance algébrique de nombres de Liouville à des puissances algébriques, Thése de troisiéme cycle, Université P. et M. Curie (Paris VI).Google Scholar
[Ma 1]Mahler, K. (1932), “Zur Approximation der Exponential Funktion und des Logarithmus”, J. reine und angew. Math. 166, 118150.CrossRefGoogle Scholar
[Ma 2]Mahler, K. (1953), “On the approximation of logarithms of algebraic numbers”, Phil. Royal Trans. Royal Soc. London, Ser. A 245, 371398.Google Scholar
[Ma 3]Mahler, K. (1967), “Application of some formulae by Hermite to the approximation of exponentials and logarithms”, Math. Ann. 168, 200227.CrossRefGoogle Scholar
[Mi]Mignotte, M. (1974), “Approximations rationnelles de π et quelques autres nombres”, Journées Arith. [1973, Grenoble], Bull. Soc. Math. France, Mémoire 37, 121132.Google Scholar
[M-W]Mignotte, M. and Waldschmidt, M. (1978), “Linear forms in two logarithms and Schneider's method”, Math. Annalen. 231, 241267.CrossRefGoogle Scholar
[S]Schneider, Th. (1957), Einführung in die transzendenten Zahlen (Springer-Verlag, Berlin and Gauthier-Villars, Paris).CrossRefGoogle Scholar
[V]Väänänen, K. (to appear), “On the arithmetic properties of certain values of the exponential function”.Google Scholar
[Wa]Waldschmidt, M. (1978), “Transcendence measures for exponentials and logarithms”, J. Austral. Math. Soc. (Ser. A) 25, 445465.CrossRefGoogle Scholar
[Wü]Wüstholz, (1976), Simultane Approximationen, die mit Potenzen bzw. Logarith men zusammenhängen (Dissertation, Freiburg).Google Scholar