Published online by Cambridge University Press: 09 April 2009
For a semigroup S let I(S) be the set of idempotents in S. A natural partial order of I(S) is defined by e ≦ f if ef = fe = e. An element e in I(S) is called a primitive idempotent if e is a minimal non-zero element of the partially ordered set (I(S), ≦). It is easy to see that an idempotent e in S is primitive if and only if, for any idempotent f in S, f = ef = fe implies f = e or f is the zero element of S. One may also easily verify that an idempotent e is primitive if and only if the only idempotents in eSe are e and the zero element. We let П(S) denote the set of primitive idempotent in S.