Until 1965, when Janko [7] established the existence of his finite simple group J1, the five Mathieu groups were the only known examples of isolated finite simple groups. In 1951, R. G. Stanton [10] showed that M12 and M24 were determined uniquely by their order. Recent characterizations of M22 and M23 by Janko [8], M22 by D. Held [6], and M11 by W. J. Wong [12], have facilitated the unique determination of the three remaining Mathieu groups by their orders. D. Parrott [9] has so characterized M22 and M11, while this paper is an outline of the characterization of M23 in terms of its order.