Published online by Cambridge University Press: 06 December 2021
In this paper we study the existence of higher dimensional arithmetic progressions in Meyer sets. We show that the case when the ratios are linearly dependent over ${\mathbb Z}$ is trivial and focus on arithmetic progressions for which the ratios are linearly independent. Given a Meyer set $\Lambda $ and a fully Euclidean model set with the property that finitely many translates of cover $\Lambda $ , we prove that we can find higher dimensional arithmetic progressions of arbitrary length with k linearly independent ratios in $\Lambda $ if and only if k is at most the rank of the ${\mathbb Z}$ -module generated by . We use this result to characterize the Meyer sets that are subsets of fully Euclidean model sets.
Communicated by Michael Coons
The work was supported by NSERC with grant 2020-00038; we are grateful for the support.