Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T22:59:22.881Z Has data issue: false hasContentIssue false

On a sublattice of the lattice of congruences on a simple regular ω-semigroup

Published online by Cambridge University Press:  09 April 2009

G. R. Baird
Affiliation:
Department of Mathematics, Monash University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The set E of idemponents of a semigroup S can be partially ordered by defining ef and only if ef = fe = e (e,f ∈ E). If E = {ei: i = i = 0,1…} and under this ordering e0 > e1 > e2… then we call S an ω-semigroup. Munn [10] has given a complete classification of simple regular ω-semigroups in terms of groups and group homomorphisms. Let 0(S) denote the set of congruences on a simple regular w-semigroup S consisting of those congruences which either are idempotent-separating or are group congruences on S. It is evident that 0(S) is a sublattice of the lattice of all congruences on S.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1972

References

[1]Clifford, A. H. and Preston, G. B., The algebraic theory of semigroups, Volume I (Math. Surveys, Number 7, Amer. Math. Soc. 1961).Google Scholar
[2]Clifford, A. H. and Preston, G. B., The algebraic theory of semigroups, Volume II (Math. Surveys, Number 7, Amer. Math. Soc. 1967).Google Scholar
[3]Hall, M. Jnr, The theory of Groups (The Macmillan Company, New York, 1959).Google Scholar
[4]Howie, J. M., ‘The maximum idempotent-separating congruence on an inverse semigroup’, Proc. Edinburgh Math. Soc. 14 (1964), 7179.Google Scholar
[5]Lallement, G., ‘Congruences et équivalences de Green sur un demi-groupe régulier’, C. R. Acad. Sc. Paris Série A262 (1966), 613616.Google Scholar
[6]Munn, W. D., ‘A class of irreducible matrix representations of an arbitrary inverse semigroup’, Proc. Glasgow Math. Assoc. 5 (1961), 4148.CrossRefGoogle Scholar
[7]Munn, W. D., ‘A certain sublattice of the congruences on a regular semigroup’, Proc. Camb. Phil. Soc. 60 (1964), 385391.Google Scholar
[8]Munn, W. D. and Reilly, N. R., ‘Congruences on a bisimple ω-semigroup’, Proc. Glasgow Math. Assoc. 7 (1966), 184192.Google Scholar
[9]Munn, W. D., ‘The lattice of congruences on a bisimple ω-semigroup’, Proc. Roy. Soc. Edinburgh 67 (1966), 175184.Google Scholar
[10]Munn, W. D., ‘Regular ω-semigroups’, Glasgow Math. J. 9 (1968), 4666.CrossRefGoogle Scholar
[11]Reilly, N. R., ‘Bisimple ω-semigroups’, Proc. Glasgow Math. Assoc. 7 (1966), 160167.Google Scholar