Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T14:24:49.280Z Has data issue: false hasContentIssue false

On 4-dimensional generalized complex space forms

Published online by Cambridge University Press:  09 April 2009

Un Kyu Kim
Affiliation:
Department of Mathematics Education, Sung Kyun Kywan University, Seoul 110-745, Korea e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We characterize four-dimensional generalized complex forms and construct an Einstein and weakly *-Einstein Hermitian manifold with pointwise constant holomorphic sectional curvature which is not globally constant.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Derdzinski, A., ‘Exemples de métriques de Kahler et d'Einstein auto-duales sur le plan complexe’, in: Géométrie Riemannienne en Dimension 4. Séminaire Arthur Besse 1978/79 (Cedic/Fernand Nathan, Paris, 1981) pp. 334346.Google Scholar
[2]Gray, A. and Vanhecke, L., ‘Almost Hermitian manifolds with constant holomorphic sectional curvature’, Časopis Pěst. Math. 104 (1979), 170179.CrossRefGoogle Scholar
[3]Kim, U. K. and Jun, J.-B., ‘On 4-dimensional almost Hermitian manifolds with pointwise constant holomorphic sectional curvature’, Kyungpook Math. J. 35 (1996), 649656.Google Scholar
[4]Kim, U. K., Kim, I. B. and Jun, J.-B., ‘On self-dual almost Hermitian 4-manifolds’, Nihonkai Math. J. 3 (1992), 163176.Google Scholar
[5]Olszak, Z., ‘On the existence of generalized complex space forms’, Israel J. Math. 65 (1989), 214218.Google Scholar
[6]Sato, T., ‘On some almost Hermitian manifolds with constant holomorphic sectional curvature’, Kyungpook Math. J. 29 (1989), 1125.Google Scholar
[7]Sekigawa, K., ‘Geometry of almost Hermitian manifold’, in: Proceedings of the Topology and Geometry Research Center 5 (12. 1994) pp. 73153.Google Scholar
[8]Tricerri, F. and Vanhecke, L., ‘Curvature tensors on almost Hermitian manifolds’, Trans. Amer. Math. Soc. 267 (1981), 365398.CrossRefGoogle Scholar
[9]Yano, K., Differential geometry on complex and almost complex spaces (Pergamon Press, New York, 1965).Google Scholar
[10]Yano, K. and Kon, M., Structures on manifolds, Ser. Pure Math. 3 (World Scientific Publ., Singapore, 1984).Google Scholar