Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T17:04:56.855Z Has data issue: false hasContentIssue false

Multialgebras, universal algebras and identities

Published online by Cambridge University Press:  09 April 2009

Cosmin Pelea
Affiliation:
“Babeş-Bolyai” University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania, e-mail: [email protected], [email protected]
Ioan Purdea
Affiliation:
“Babeş-Bolyai” University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania, e-mail: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we determine the smallest equivalence relation on a multialgebra for which the factor multialgebra is a universal algebra satisfying a given identity. We also establish an important property for the factor multialgebra (of a multialgebra) modulo this relation.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Benado, M., ‘Les ensembles partiellement ordonnés et le théborème de raffinement de Schreier, II’, Czechoslovak Math. J. 5 (80) (1955), 308344.CrossRefGoogle Scholar
[2]Breaz, S. and Pelea, C., ‘Multialgebras and term functions over the algebra of their nonvoid subsets’, Mathematica 43 (66) (2001), 143149.Google Scholar
[3]Burris, S. and Sankappanavar, H. P., A course in universal algebra (Springer, New-York, 1981).CrossRefGoogle Scholar
[4]Corsini, P., Prolegomena of hypergroup theory, Supplement to Riv. Mat. Pura Appl. (Aviani Editore, Tricesimo, 1993).Google Scholar
[5]Corsini, P. and Leoreanu, V., Applications of hyperstructure theory (Kluwer, Boston, 2003).CrossRefGoogle Scholar
[6]Dresher, M. and Ore, O., ‘Theory of multigroups’, Amer. J. Math. 60 (1938), 705733.CrossRefGoogle Scholar
[7]Freni, D., ‘A new characterization of the derived hypergroup via strongly regular equivalences’, Comm. Algebra 30 (2002), 39773989.CrossRefGoogle Scholar
[8]Grätzer, G., ‘A representation theorem for multi-algebras’, Arch. Math. 13 (1962), 452456.CrossRefGoogle Scholar
[9]Grätzer, G., Universal algebra, 2nd edition (Springer, New York, 1979).CrossRefGoogle Scholar
[10]Pelea, C., ‘On the fundamental relation of a multialgebra’, Ital. J. Pure Appl. Math. 10 (2001), 141146.Google Scholar
[11]Pelea, C., ‘Identities and multialgebras’, Ital. J. Pure Appl. Math. 15 (2004), 8392.Google Scholar
[12]Pickett, H. E., ‘Homomorphisms and subalgebras of multialgebras’, Pacific J. Math. 21 (1967), 327342.CrossRefGoogle Scholar
[13]Vougiouklis, T., ‘Representations of hypergroups by generalized permutations’, Algebra Universalis 29 (1992), 172183.CrossRefGoogle Scholar
[14]Vougiouklis, T., ‘On Hv-rings and Hv-representations’, Discrete Math. 208/209 (1999), 615620.CrossRefGoogle Scholar