Published online by Cambridge University Press: 09 April 2009
Fitting classes of finite solvable groups were first considered by Fischer, who with Gäschutz and Hartley (1967) showed in that in each finite solvable group there is a unique conjugacy class of “-injectors”, for a Fitting class. In general the behaviour of Fitting classes and injectors seems somewhat mysterious and hard to determine. This is in contrast to the situation for saturated formations and -projectors of finite solvable groups which, because of the equivalence saturated formations and locally defined formations, can be studied in a much more detailed way. However for those Fitting classes that are “locally defined” the theory of -injectors can be made more explicit by considering various centralizers involving the local definition of , giving results analogous to some of those concerning locally defined formations. Particular attention will be given to the subgroup B() defined by where the set {(p)} of Fitting classes locally defines , and the Sp are the Sylow p-subgroups associated with a given Sylow system − B() plays a role very much like that of Graddon's -reducer in Graddon (1971). An -injector of B() is an -injector of G, and for certain simple B() is an -injector of G.