Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T23:06:52.180Z Has data issue: false hasContentIssue false

Legendre transforms and Apéry's sequences

Published online by Cambridge University Press:  09 April 2009

Asmus L. Schmidt
Affiliation:
Matematisk Institut, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This article studies particular sequences satisfying polynomial recurrences, among those Apéry's sequence which is shown to be the Legendre transform of the sequence. This results in the construction of simultaneous approximations of π 2/8 and ζ(3).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Askey, R. and Wilson, J. A., ‘A recurrence relation generalizing those of Apéry’, J. Austral. Math. Soc. (Series A) 36 (1984), 267278.CrossRefGoogle Scholar
[2]Cusick, T., ‘Recurrences for sums of powers of binomial coefficients’, J. Combin. Theory Ser. A 52 (1989), 7783.CrossRefGoogle Scholar
[3]Franel, J., L'Intermédiaire des Mathématiciens vol. 1 (1894).Google Scholar
[4]Franel, J., L'Intermédiaire des Mathématiciens vol. 2 (1895).Google Scholar
[5]Perlstadt, M. A., ‘Some recurrences for sums of powers of binomial coefficients’, J. Number Theory 27 (1987), 304309.CrossRefGoogle Scholar
[6]van der Poorten, A. J., ‘A proof that Euler missed…Apéry's proof of the irrationality of ζ(3)’, Math. Intelligencer 1 (1978/1979), 195203.CrossRefGoogle Scholar
[7]Rademacher, H., Topics in analytic number theory (Springer, Berlin, 1973).CrossRefGoogle Scholar
[8]Riordan, J., Combinatorial identities (Wiley, New York, 1968).Google Scholar
[9]Schmidt, A. L., ‘Generalized Legendre polynomials’, J. Reine Angew. Math. 404 (1990), 192202.Google Scholar
[10]Schmidt, A. L., ‘Generalized q-Legendre polynomials’, J. Comput. Appl. Math. 49 (1993), 243249.CrossRefGoogle Scholar
[11]Slater, L. J., Generalized hypergeometric functions (Cambridge Univ. Press, London, 1966).Google Scholar
[12]Staver, T. B., ‘Om summasjon av potenser av binomialkoefficientene’, Norsk Matematisk Tidskrift 29 (1947), 97103.Google Scholar
[13]Strehl, V., ‘Binomial identities — combinatorial and algorithmic aspects’, Discrete Math. 136 (1994), 309346.CrossRefGoogle Scholar
[14]Szegö, G., Orthogonal polynomials (Amer. Math. Soc., Providence, 1975).Google Scholar