Article contents
The iterated equation of generalized axially symmetric potential theory. I. Particular solutions
Published online by Cambridge University Press: 09 April 2009
Extract
The iterated equation of generalized axially symmetric potential theory (GASPT) [1] is defined by the relations (1) where (2) and Particular cases of this equation occur in many physical problems. In classical hydrodynamics, for example, the case n = 1 appears in the study of the irrotational motion of an incompressible fluid where, in two-dimensional flow, both the velocity potential φ and the stream function Ψ satisfy Laplace's equation, L0(f) = 0; and, in axially symmetric flow, φ and satisfy the equations L1 (φ) = 0, L-1 (ψ) = 0. The case n = 2 occurs in the study of the Stokes flow of a viscous fluid where the stream function satisfies the equation L2k(ψ) = 0 with k = 0 in two-dimensional flow and k = −1 in axially symmetric flow.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1967
References
- 10
- Cited by