Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T22:17:03.123Z Has data issue: false hasContentIssue false

A generalization of Tong's theorem and properties of pairwise perfectly normal spaces

Published online by Cambridge University Press:  09 April 2009

Manuel López-Pellicer
Affiliation:
C´tedra de Matem´ticas, E.T.S.I. Agrónomos, Universidad Politécnica, Camino de Vera s.n., 46022-Valencia, Spain
Angel Gutiérrez
Affiliation:
Departamento de Matem´ticas, E.U. del Profesorado de E.G.B., Alcalde Reig, 8 46006-Valencia, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we give some properties of the pairwise perfectly normal spaces defined by Lane. In particular we prove that a space (X, P, Q) is pairwise perfectly normal if and only if every P(Q)–closed set is the zero of a P(Q)–l.s.c. and Q(P)–u.s.c. function. Also we characterize the pairwise perfect normality in terms of sequences of semicontinuous functions by means of a result which contains the known Tong's characterization of perfectly normal topological spaces, whose proof we modify by using the technique of binary relations.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1985

References

[1]Arya, S. P. and Singhal, A., “A note on pairwise D1 spaces”, Glasnik Math. 14 (34) (1979), 147150.Google Scholar
[2]Ceder, J. G., “Some generalisations of metric spaces”, Pacific J. Math. 11 (1961), 105125.CrossRefGoogle Scholar
[3]Gutiérrez, A. and Romaguera, S., “Sobre espacios pairwise estratificables”, Rev. Roumaine Math. Pures Appl., to appear.Google Scholar
[4]Lane, E. P., “Bitopological spaces and quasi-uniform spaces”, Proc. London Math. Soc. (3) 17 (1967), 241256.Google Scholar
[5]López, M. and Santos, J. L., “A necessary and sufficient condition for the insertion of a continuous function”, Proc. Amer. Math. Soc., to appear.Google Scholar
[6]Patty, C. W., “Bitopological spaces”, Duke Math. J. 34 (1967), 387392.CrossRefGoogle Scholar
[7]Romaguera, S., “Two characterizations of quasi-pseudometrizable bitopological spaces”, J. Austral. Math. Soc. Ser. A 35 (1983), 327333.CrossRefGoogle Scholar
[8]Tong, H., “Some characterizations of normal and perfectly normal spaces”, Duke Math. J. 19 (1952), 289292.CrossRefGoogle Scholar