Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T01:21:07.076Z Has data issue: false hasContentIssue false

A generalization of the cofiniteness problem in local cohomology modules

Published online by Cambridge University Press:  09 April 2009

J. Asadollahi
Affiliation:
Institute for Studies in TheoreticalPhysics and Mathematics P.O. Box 19395-5746, Tehran, Iran and Shahre-e-Kord University, Faculty of Science P.O.Box 115, Shahre-e-Kord, Iran e-mail: [email protected]
K. Khashyarmanesh
Affiliation:
Institute for Studies in Theoretical Physics and MathematicsP.O. Box 19395-5746, Tehran, IranDamghan Univesity, Department of Mathematics, P.O. Box 36715-364, Damghan, Iran, e-mail: [email protected]@mail.ipm.ir.
SH. Salarian
Affiliation:
Institute for Studies in Theoretical Physics and MathematicsP.O. Box 19395-5746, Tehran, IranDamghan Univesity, Department of Mathematics, P.O. Box 36715-364, Damghan, Iran, e-mail: [email protected]@mail.ipm.ir.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let R be a commutative Noetherian ring with nonzero identity and let M be a finitely generated R-module. In this paper, we prove that if an ideal I of R is generated by a u.s.d-sequence on M then the local cohomology module (M) is I-cofinite. Furthermore, for any system of ideals Φ of R, we study the cofiniteness problem in the context of general local cohomology modules.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Asadollahi, J., Khashyarmanesh, K. and Salarian, Sh., ‘Local-global principle for annihilation of general local cohomology’, Colloq. Math. 87 (2001), 129136.CrossRefGoogle Scholar
[2]Bass, H., ‘On the ubiquity of Gorenstein rings’, Math. Z. 82 (1963), 828.CrossRefGoogle Scholar
[3]Bijan-Zadeh, M. H., ‘Torsion theories and local cohomology over commutative Noetherian rings’, J. London Math. Soc. 19 (1979), 402410.CrossRefGoogle Scholar
[4]Bijan-Zadeh, M. H., ‘A common generalization of local cohomology theories’, Glasgow Math. J. 21 (1980), 173181.CrossRefGoogle Scholar
[5]Bijan-Zadeh, M. H., ‘Modules of generalized fractions and general local cohomology modules’, Arch. Math. 48 (1987), 5862.CrossRefGoogle Scholar
[6]Brodmann, M. and Faghani, A. Lashgari, ‘A finiteness result for associated primes of local cohomology modules’, Proc. Amer. Math. Soc. 128 (2000), 28512853.CrossRefGoogle Scholar
[7]Brodmann, M. and Sharp, R. Y., Local cohomology—an algebraic introduction with geometric applications Cambridge Stud. Adv. Math. 60 (Cambridge University Press, Cambridge, 1998).CrossRefGoogle Scholar
[8]Delfino, D., ‘On the cofiniteness of local cohomology modules’, Math proc. Cambridge philos Soc. 115 (1994), 7984.CrossRefGoogle Scholar
[9]Delfino, D. and Marley, T., ‘Cofinite modules and local cohomology’, J. Pure Appl. Algebra 121 (1997), 4552.CrossRefGoogle Scholar
[10]Grothendieck, A., Local cohomology notes by R. Hartshorne, Lecture Notes in Math. 862 (Springer, New York, 1966).Google Scholar
[11]Grothendieck, A., Cohomologie locale des faiseaux cohérents et théorèmes de Lefshetz locaux et globaux (North Holand, 1969).Google Scholar
[12]Hartshorne, R., ‘Affine duality and cofiniteness’, Invent. Math. 9 (1970), 145164.CrossRefGoogle Scholar
[13]Huneke, C., ‘The theory of d-sequences and power of ideals’, Adv. Math. 46 (1982), 249279.CrossRefGoogle Scholar
[14]Huneke, C. and Koh, J., ‘Cofiniteness and vanishing of local cohomology modules’, Math. Proc. Cambridge Philos. Soc. 110 (1991), 421429.CrossRefGoogle Scholar
[15]Huneke, C. and Sharp, R. Y., ‘Bass numbers of local cohomology modules’, Trans. Amer. Math. Soc. 339 (1993), 765779.CrossRefGoogle Scholar
[16]Kawasaki, K.-I., ‘On the finiteness of bass numbers of local cohomology modules’, Proc. Amer. Math. Soc. 124 (1996), 32753279.CrossRefGoogle Scholar
[17]Kawasaki, K.-I., ‘Cofiniteness of local cohomology modules for principal ideals’, Bull. London Math. Soc. 30 (1998), 241246.CrossRefGoogle Scholar
[18]Khashyarmanesh, K. and Salarian, Sh., ‘Filter regular sequences and the finiteness of local cohomology modules’, Comm. Algebra (8) 26 (1998), 24832490.CrossRefGoogle Scholar
[19]Khashyarmanesh, K. and Salarian, Sh., ‘On the associated primes of local cohomology modules’, Comm. Algebra (12) 27 (1999), 61916198.CrossRefGoogle Scholar
[20]Lyubeznik, G., ‘Finiteness properties of local cohomology modules (an application of D-modules to commutative algebra)’, Invent. Math. 102 (1993), 4155.CrossRefGoogle Scholar
[21]Matlis, E., ‘Injective modules over noetherian rings’, Pacific J. Math. 8 (1958), 511528.CrossRefGoogle Scholar
[22]Nagel, U. and Schenzel, P., ‘Cohomological annihilators and Castelnuovo-Mumford regularity’, in: Commutative algebra: Syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemp. Math. 159 (Amer. Math. Soc., Providence, RI, 1994) pp. 307328.CrossRefGoogle Scholar
[23]Peskine, C. and Szpiro, L., ‘Dimension projective finie et cohomologie locale’, I.H.E.S. 42 (1973), 323395.Google Scholar
[24]Rotman, J., An introduction to homological algebra (Academic Press, Orlando, FL, 1979).Google Scholar
[25]Schenzel, P., Trung, N. V. and Cuong, N. T., ‘Verallgemeinerte Cohen-Macaulay-Moduln’, Math. Nachr. 85 (1978), 5773.CrossRefGoogle Scholar
[26]Sharp, R. Y. and Zakeri, H., ‘Modules of generalized fractions’, Mathematika 29 (1982), 3241.CrossRefGoogle Scholar
[27]Stuckrad, J. and Vogel, W., Buchsbaum rings and applications (VEB Deutscher Verlag der Wissenschaften, Berlin, 1986).CrossRefGoogle Scholar
[28]Trung, N. V., ‘Absolutely superficial sequences’, Math. Proc. Cambridge Philos. Soc. 93 (1983), 3547.CrossRefGoogle Scholar
[29]Yoshida, K. -I., ‘Cofiniteness of local cohomology modules for ideals of dimension one’, Nagoya Math. J. 147 (1997), 179191.CrossRefGoogle Scholar