Published online by Cambridge University Press: 09 April 2009
If L is a pseudocomplemented distributive lattice which is generated by a finite set X, then we will show that there exists a subset G of L which is associated with X in a natural way that ¦G¦ ≦ ¦X¦ + 2¦x¦ and whose structure as a partially ordered set characterizes the structure of L to a great extent. We first prove in Section 2 as a basic fact that each element of L can be obtained by forming sums (joins) and products (meets) of elements of G only. Thus, L considered as a distributive lattice with 0,1 (the operation of pseudocomplementation deleted), is generated by G. We apply this to characterize for example, the maximal homomorphic images of L in each of the equational subclasses of the class Bω of pseudocomplemented distributive lattices, and also to find the conditions which have to be satisfied by G in order that X freely generates L.