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If L is a pseudocomplemented distributive lattice which is generated by a
finite set X, then we will show that there exists a subset G of L which is associated
with X in a natural way such that |G| < |X ] + 2/*1 and whose structure as a
partially ordered set characterizes the structure of L to a great extent. We first
prove in Section 2 as a basic fact that each element of L can be obtained by forming
sums (joins) and products (meets) of elements of G only. Thus, L considered as a
distributive lattice with 0,1 (the operation of pseudocomplementation deleted),
is generated by G. We apply this to characterize for example, the maximal homo-
morphic images of L in each of the equational subclasses of the class B, of pseudo-
complemented distributive lattices, and also to find the conditions which have
to be satisfied by G in order that X freely generates L.

In Section 3 we investigate the pseudocomplemented meet semilattice G
which is generated by G for the case that L is freely generated by X. It is shown
that G ~ {0} is exactly the set of join-irreducibles of L (Urquhart (to appear)).
Furthermore we show that G is the pseudocomplemented meet-semilattice which
is freely generated by X (cf. Balbes (1973)) and that L is isomorphic to the algebra
freely generated by G over the class of distributive lattices, where Gis considered
as a partial lattice.

It follows from the basic result in Section 2 mentioned above, that L con-
sidered as a distributive lattice with 0,1, is a lattice homomorphic image of the
distributive lattice with 0,1 which is freely generated by a set of cardinality |G |
It is a natural question to ask whether |G| is minimal with this property. This
question is answered in Section 4 in the affirmative.

In Section 5 we generalize some of the results obtained in the previous
sections to the case that L is infinite.

1. Preliminaries
For the notions of algebra, subalgebra, partial algebra, relative (partial)
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algebra, homomorphism between partial algebras, principal congruence re-
lation, maximal homomorphic image, etc. we refer the reader to Griitzer (1968).
We will often denote a (partial) algebra {4, F) by the symbol 4 only. If 4 and B
are (partial) algebras of the same similarity type then [ A4, B] will denote the set
of homomorphisms from A to B. It will often be useful, if we deal with a class
V of (partial) algebras of a certain similarity type and if A and BeV, to write
[A4, B]y instead of [ 4, B]. If Vis an equational class of algebrasand 4eV, T < A4,
then [T], will denote the subalgebra of A generated by T. If T = {x,---,x,},
then we will write [x,,--,x,]y instead of [{x,,--,x,}]y. If V is an equational
class of algebras then FV(X) denotes the free algebra over V on a free generating
set X. If | X ] = «, then we also use the symbol FV(x). Again, if ¥ is an equational
class and A is a partial algebra of the same similarity type then FV(4) denotes
the algebra freely generated by A over V. Thus FV(A)eV and there exists
an isomorphism f between A and a relative subalgebra 4’ of FV(A) such that
[4']y = FW(4) and for each ge[A4,B], there exists an he[FV(4), B] with

h-f=g.
Of particular interest in this paper are the equational classes of algebras:
D:  distributive lattices with operations - and + .

D,,: distributive lattices with 0,1 and operations +, -, 0, 1.
B,: pseudocomplemented distributive lattices with operations + , -, *, 0.
M: pseudocomplemented (meet) semilattices with operations -, *, 0.
The operation * in B, and M is defined by xx* = 0 and if xy = 0, then
y < x*. For the properties of these classes see Gritzer (1968), Frink (1962) and
Balbes (1973) Recall that for Le B, or L e M we have for x,ye L.
1.1 (i) x £ y implies x* = y*
(i) x £ x**
(iii) x* = x***
The two element Boolean algebra is denoted by 2 and 2" @ 1, m = 0 stands for
the algebra obtained from 2™ by adjoining another one element. Note 2" @ 1€ B,,
for m =2 0. For LeB,, we let S(L) = {x*lxeL}. It is well known that S(L) is
a Boolean algebra under the partial ordering of L. It is known that besides B,
the only equational subclasess of B, are the classes B,, m = —1,0,1,--- and
where B_, is the trivial class and where for m = 0 B,, is the class generated by
2" @ 1 (Lakser (1971), Lee(1970)). If L B,,, then LeB,, m = 1, is equivalent
to either of the following conditions (Gritzer (1971)).

1.2. For zy,z4,+",z,€L:

D (zyzy-zw)* + (zizy vz 4+ + (zizp - zp)* =1
(ii) if z;z; = O for all i # j, then 25+ z{ + - + z} = 1.

Finally, for notational convenience, if X is a set, T - X means T is a finite
non-void subset of X.
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2. Lattice theoretic generation of B, algebras

It is well known that the congruence relation ~ on L e B, defined by x ~ y
if and only if x* = y* is such that S(L) =~ L/ ~ . In the following lemma we give
an alternate characterization of this congruence relation for the case that L is
finite. This result will be used to characterize the * operation of L, L finite, in
terms of the atoms of L.

2.1 LeMMA. Let Le B,, L finite. For x,ycL, define x = y if and only if
{aeL|a is an atom of L, a £ x} = {aeLIa is an atom of L, a < y}. Then
x = y if and only if x* = y*.

ProoF. LetxeL.Lety = X{acL|aisanatom,a £ x}. Let z = Z{weL|
w = y}. Then by distributivity z = y. Hence xz = 0. Moreover, suppose xu = 0
for some uc L. It must be that {aeL|a is an atom, a £ u} < {aeL]a is an
atom, a < y}. So u < z. Hence z = x*. The lemma now follows.

2.2 NotaTION. Let LeB, with L = [x;,-,x,]p,. Define x? = x; and
x; =xf. For 1 £j<2" let a; = x{'---x", with (g,,---,¢,) €{0,1}". Define
b;=a. For 1<i<n and 1<j=<2" let (a); = (b)), =¢. Also let
X = {xq,-,xp}, A4 = {ay,--,asn}, B={by,--,byn} and G =X U B. In the
sequel, the sets G and B will be of particular interest. In this section we will show
that the partial order structure of G and B determine the algebraic structure
of L.

2.3 LemMA. Let LeB, with L = [xy,-,x,]p,. Then each a;€ A is an
atom or 0. Moreover, every atom in L is equal to some a; for exactly one i,

Proor. Clearly x; - a;€ {0, a;} for all x;. Let y, z € L be such that ya; € {0, a;}
and za;€{0,q;}. Certainly (yz)a;€ {0,a;} and by distributivity (y + z)a; € {0, a;}.
If ya; = 0, then a; < y*. Thus y*a; = a; If ya; = a;, then y 2 a;. So by 1.1,
y* < a;* so y*a; = 0. Since L = [x,, -+, x,]s,, this completes the proof of the first
claim. Next observe that s = £{a;|1 <i<2"} = (x; + x}) - (x, + x¥). Hence
s* = 1*, 50 by 2.1 every atom is equal to some a;. If a; = a; in L, for i # j,
then there exists k for which (a); # (@) So a; < x,xf = 0.

From 2.1 it follows that if a is an atom of L, then a*is a dual atom of S(L).
So from 2.3 it follows that each b; € B is either 1 or a dual atom in the Boolean
algebra S(L). Moreover, every dual atom of S(L) is equal to exactly one b;. Thus,
S(L) is generated by B under the formation of products. (Note Il¢ = 1). Indeed,
let z*e S(L). Form T = {b,-] a; < z}. It is easily seen that z* = IIT.

2.4 THEOREM. Let LeB,, L = [X], , X finite. Then L = [G]p,,.

Proor. Since L = [X]p_ and X £ G, only applications of * need be con-
sidered. By the remarks following 2.3, any application of * is equivalent to
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forming IIT for some T < B = G. Indeed, if zeL, then z = OIT, + --- + IIT;
for some family of sets T, =« G, 1 S i =Zr.

2.6 THEOREM. Let LeB,, L = [x4,---,X,]p,. Then LeB,, m = 1, if and
only if for all I = {1,2,---,2"} such that |I| > m+ 1, the equality X, _;b; = 1
holds.

PrROOF. By 2.3, a;a; =0fori # j. Soby 1.2 X, ; b; = 1. Conversely, suppose
{Y0s Y1, ¥m} S L and y;y; = 0 for i # j. Note y¥= H{bk'ak, <y} = 0OT,.
Hence T; N T; = & or {1}. So ZT.oyi = ZTo(IT) = (£Qy) -+ (ZQ,) where
each Q; contains the element 1 or m+1 b;. Hence £Q; = 1 for all i.

2.7 THeoREM. Let L = [xy,,%,]p,. Define u, = I{LS|S < B, |5]
= m+ 1}. Let 6(u,, 1) be the principal B, congruence relation generated by
{u,, 1}. Define L,, = L|0(u,, 1). Then all of the following hold:

i) L,€B,

ii) L, is a maximal homomorphic image of L in B,

iti) L, is isomorphic to the interval [0,u,] < L.

Proor. By 2.6, L,€B,. If L/@ = L, e B,, then again by 2.6 1 = u,(0).
Hence, 6 = 6(u,, 1), so (ii) holds. Observe that since 6(u,,, 1) is determined by a
principal filter, x = y (6(u,,, 1)) if and only if xu,, = yu,, (Lakser (1973)). So every
congruence class of L, contains exactly one element in [0, u,,]. Hence (iii) follows.

We now specialize to the case where L is free in B,,.

2.8 THEOREM. Let G =X U B < FB,’X) with X = {x,,*-",x,}. For
S, T < G,IIS £ T if and only if at least one of the following hold:

i SNT=#JZ.

(ii) There exist 1 £j <2"and 1 £ i < n with b;eT and (b)); = 1 for
some x;€ S.

(iii) B = {b;|b;e S} {b,|(b): = 1, x;€S}.
For FB,(X) the following condition may be added to the list:

@) [T B|>m.

Proor. < (i) suffices in any lattice. For (ii) observe that (b;); = 1 implies
x*z2 a;. Soby 1.1 x; < x** < b;e T. If (iii) holds then I1S < I1B = 0. In the
case of FB,(X), if | TN BI > m, then T = 1 by 2.6. = Suppose in FB,(X)
I1S £ X T and neither (i), (ii) nor (iii) hold. Note that since the Boolean algebra
22"isa B, homomorphic image of FB,(n), each of the b;,, 1 < i < 2", are distinct
in FB_ (n). Let [ TN B] = t.If t = 0, by the negation of (iii) a b; may be adjoined
to T for which conditions (i) (ii) nor (iii) will still not hold. So assume ]T N Bl
= t = 1. There exists f € [FB,(X), 2] such that f(a;) is an atom of 2* for all i,
b;e T, f(a;) = 0 otherwise. Adjoin a new maximal element 1’ to 2’ to obtain
L=2"@®71. Thus LeB,, 0* = 1’ and 1’ is join-irreducible. Assume x;€ S for
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1<igk, x;¢S, i > k. Define y: X— L by y(x;)) =1" for 1 £i £k, y(x;)
= f(x,;) otherwise. Let g € [FB,(n), L], extend y. If x; T, then by the negation of
(i), g(x;) < 1'. If b;eT, then by the negation of (ii) g(a;) = f(a;) so 1'> f(b))
2 g(b;). Thusg(XT) < 1". If x;e Sor b;e S with (b;); = 1 forsome 1 < i L k,
then g(x;)) = g(b)) = 1'. So suppose b,€S, a; = x; - XX, 51" x,~ Let
C = {a;|(aj), = (a), for all r>k}. Then 0 = Zf(C)=f( " -+ x,"
gyt - x,™). Thus g(b;) = 1’ also. So g(I1S) = 1'. This contradicts the assump-
tion IIS < XT. For the case of FB,(X), note that if (iv) does not hold, then
t = ]T N B| < m. But 2°®1'e B, for t £ m. So the above contradiction can
be obtained.

2.9 THEOREM. The lattice FB,(n) contains for each m < w an ideal which
is lattice isomorphic to FB,(n). Moreover, these ideals form a chain when
ordered by inclusion.

Proor. Since B,, < B, FB,(n) is a homomorphic image of FB,(n). Let
6,, be a congruence on FB,(n) such that FB,(n)/0 ~ FB,(n). Apply 2.7 to show
0, = 0(u,,1). So by 2.7 (iii) the ideal [0,u,] is lattice isomorphic to FB,(n).
Finally, note u; < u, < -~ u,, < --- in FB,(n).

Next, independence conditions are obtained for B, and B,,. See Marczewski
(1958) of Gritzer (1968) for a general discussion of independence.

2.10 THEOREM. Let LeB,, L =[x, -, X,]p,. L =~ FB,(n) if and only if
whenever S, T =- G and I1S £ X T, then one or more of 2.8 (i), (ii) or (iii) hold.
Moreover, if Le B, then L ~ FB,(n) if and only if the additional condition
of 2.8 (iv) is included.

PROOF. = Use 2.8. < Let X = {x,, -, x,}. Define y: X - L by y(x;) = x,.
Then y extends to a B, homomorphism g from FB_,(n) (FB,(n)) onto LeB,
(L e B,). A standard argument shows that conditions (i) (ii) (iii) (and (iv)) guaran-
tee that g is also one-to-one.

2.11 CoroLLARY (Gritzer, Lakser (1971; page 190)), For k = 2", FB,(n)
~ FBy(n).

Proor. For k = 2", since | B| < 27, condition 2.8 (iv) cannot hold.

3. The semilattice generated by G
3.1 NotatioN. Consider L€ B,,, L = [X]p,_ with X finite. Let G be as in 2.2.
Form G = {IIT|T < G}. Thus, G is the closure of G under the formation of
products. Observe [1¢ = 1€ G and from the remarks following 2.3, S(L) < G.
Also, 2.4 implies that the set of join-irreducible elements of L is contained in G.

3.2 NoraTION. Let G be as in 3.1 with ze G. Let f(z) = {b,eB|b; = z}
and x(z) = {x;€ X |x; 2 z}. Then z = (AE))Tx(2)).
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In the remainder of this section we will be concerned with the set G € FB_(X)
or G € FB,(X) for IXI = n, n finite.

3.3 THEOREM. The join-irreducible elements of FB,(n) are precisely
those z€ G, z # 0, for which 2" > IB(z)I 2 2" — m. In particular, the set of
join-irreducibles of FB,(X) is G\{0}.

ProoF. If zeG and if |B(z)| = 2, then z = 0. If | B(z)| < 2" — m, then
there exist, say by, :-+, b,, € B, with b; & z for 0 £ i < m. Thus in FB,(n) we have
z=z - 1=z(by + -+ +b,)=2zby+ -+ +2zb,,. Finally, suppose 2" > I,B(z)[ =2"— m.
Letz = IT, + --- + IIT,, with T; < G. If IIT; # z for all i, then for each i
there exist t; € T; such that ¢, & z.

Thus

0# z = [IpENIx(2) = ty + -+ +1,.

Since |{t,,---,t,} N B| < m, 2.8 gives a contradiction. So z is join-irreducible,
The second part of the theorem follows from 2.11.

For an alternate characterization of the join-irreducibles of FB,(n) and
FB_(n) see Urquhart (to appear).

We now determine the number of join-irreducible elements in FB,(n) and
FB,(n). This, of course, gives the lengths of these lattices. Compare Balbes (1973).

3.4 THEOREM. Define p(s,t) = Xi_, (3). Then the number of join-
irreducible elements of FB,(n) is Xi_o () p(n — k,m). In particular, for
FB,(n) this is equal to X} _, () (2** —1).

ProoF. If z = (IB(2))(IIx(z)) with |x(z)| = k, then B\B(z) is contained
in a set of cardinality 2" % Since B\f(z) # &, there are p(n — k, m) choices for
B(z). Hence, (;) p(n — k, m) possible choices for z. Finally observe that if m > 2,
then p(n — k,m) = 22 — 1 for all k. Apply 2.11 to complete the proof.

3.5 REMARK. Note that G is closed with respect to - and *. If G is considered
as a relative partial B, subalgebra of FB,(n), then for y,ze G, y + z is defined
if and only if y + ze G. So by 3.3, y + z is defined if and only if y and z are
comparable elements of FB,(n).

3.6 THEOREM. Let G = FB,(X), | X | finite, be as in 3.1. Consider G as a
partial lattice where x + y is defined if and only if x and y are comparable.
Then FB,(X) is the distributive lattice freely generated over D by the partial
lattice G.

PrOOF. By 3.5 G is a relative partial lattice and by 2.4 [G], = FB,(X).
Let Le D and fe[G, L]p. Since Ly = [f(G)], is finite, L, € B,,. So the function f
restricted to X has an extension to g € [FB(X),L,] B, But since G < [X], and f
is a partial homomorphism, g extends f as well. So g € [FB,(X), L],.
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The next lemma gives an embedding of an arbitrary pseudocomplemented
semilattice in a pseudocomplemented lattice. See also Balbes (1969) and Dyson

(1965).

3.7 LeMMA. Let- Se M, S arbitrary. There exists Le B, such that the
reduct ' = (L, *, *,0) of L has a subalgebra S’ which is M-isomorphic to S.
Moreover, [S"]p = L.

ProoF. For aeS let (a] = {zeS|0 <z < a}. Form §' = {(a]|aes}.
Let L be the ring of sets generated by S It is easily verified that S’ is a pseudo-
complemented semilattice with zero element (0], with N for product and with
@l* = (a*]. To complete the proof it remains to show LeB,. Let TeL. So
there exist t;,--,t,€S such that T = (] U ... U (t,]. Omit all t; for which
t; < t;for somej # i. Then this is a unique representation for T. For, if otherwise,
T=(@]V V(] = rJv v (@l So for any i, t; <r; for some j.
Similarly r; < t. Thus t; <t so t;=r;=t. Thus {ts, .} = {ry, - 1}
Define T* = (tf] U --- U (t;‘]. By the above, T* is well defined and easily seen
to be the pseudocomplement of T in L.

3.8 COROLLARY. Let S€ M be an arbitrary pseudocomplemented semi-
iattice. Consider S as a partial B, lattice where x + y is defined if and only if
x and y are comparable. Then the B, lattice L constructed from S in 3.7 is
isomorphic to the B, lattice freely generated by the partial B, algebra S.

Prook. It is easily seen that the set S'\(0] consists only of join-irreducibles
in L. So S’ is a relative partial B,, subalgebra of L. Using the uniqueness of the
representation of elements of L as union of principal ideals in S, the mapping
extension property can be verified.

3.9 TuroReM. Let G < FB,(n), n finite. Then G is M-isomorphic to FM(n).

ProoF. Let X = {x;,--,X,} and Y = {y;,--,y,}. Consider arbitrary
SeM, S = [Y]y. Suppose FB,(n) = [X]s,. Construct S’ and L as in 3.7.
Identify S with S’ = L. Observe [Y]s, = L. Let y(x;) = y; and extend 7 to
g €[FB,(n), L]p,,. Then g(G) is closed under - and * and contains 0 and Y. Hence
S = g(&). So g € [G, Sy and g extends y as desired.

For an alternate characterization of FM(n), see Balbes (1973).

4, Minimality

- It follows from 2.4 that FB(n) is a Do; homomorphic image of F Dgy(n +27).
A natural question is whether the number n + 2" is minimal with this property.
Or equivalently, does there exist-a subset S & FB,(n), [S ] < n + 2", for which

FBy(n) = [S1o,, 7
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4.1 LEMMA. Every element of B < FB,(n) is both meet-irreducible and
Jjoin-irreducible.

ProoF. Let b;eB. By 2.8 b; is join-irreducible. Suppose b; = bq. By 2.4
we may write p = (X5,)--(XS) and ¢ = (XT,)--(XT), with S, T, < G.
Use 2.8 and an argument similar to that in 3.3 to show that for some i, b; = XS,

or b; 2 XT..

4.2 THEOREM. If FB,(n) = [Y]p,,, then |Y| 2 n + 2"

Proor. By 4.1 B < Y. Each x;, 1 £ i £ n, in the free generating set for
FB,(n) is join-irreducible. So x; = I1S;, S; = Y. Define T; = {yeY ] yeS,y¢B}.
By 2.8, T; ## & for each i. Let b, € B be such that (b;); =0 foralli,1 £i < n.
If for some i, T, = N ;s T; then S; s (U;»T)Y (B\{b;}). Hence x;
2 (I1;4;x;) (II(B\{b,})). This violates 2.8. So each T; contains, say, y; for
which y;¢ B and y; ¢ T; for j # i. Thus | Y| 2 n + 2"

It is interesting to note that 4.2 is not true for FB,(n), m arbitrary.

5. ‘The infinite case

In this final section we generalize some of the results of the previous sections
to FB,(X), where X is an infinite set of arbitrary cardinality.

5.1 DeFINITION. For Y <. X, define B(Y) = FB,(X) by
B(Y) = {[(TLS*I(Y\S)]*|S = Y}.
Let B= U{B(Y)|Y < X}. Form G = X U B.

5.2 THEOREM. FB,(X) = [G]p,,. Moreover, if a is any infinite cardinal,
FB(®) is a Doy homomorphic image of FDy, (). ’

Proor. For ze FB,(X), z may be obtained from a finite subset ¥ = X by
a finite series of applications of +, - and *. Apply 2.4 to show [Y]g,
= [Y U B(Y)]p,,. The second claim follows from the fact that IGI =|X],
whenever X is infinite.

5.3 REMARK. If z,,---,z, € FB,(X), then there exists some set ¥ = X
such that z,--,z,e[Y], . Observe [Y]z = FB,(Y). Thus, the results of
sections 2 and 3 apply to z,, -+, z,. In particular, for X infinite and G as in 5.1,
define G = {IIT|T < G, T finite}. It can be seen that the set of join-irreducible
elements of FB,(X) is G\{0}. Thus G is a relative partial sublattice of FB,(X):
¥ + z is defined only in the case that y and z are comparable. Arguments similar
to those in Section 3 give the following:

5.4 THEOREM. FB,(X) is the distributive lattice freely generated in D by
the partial lattice G.
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5.5 THEOREM. The pseudocomplemented semilattice G is M isomorphic
to FM(X).

Recall that for Le D, a subset F = L is a prime filter if and only if there
exists he[L,{0,1}]p, k onto such that h™!(1) = F. Observe that every proper
filter in the partial lattice G is a prime. Apply 5.4 to obtain

5.6 THEOREM. The partially ordered set of prime filters of FB,(X) is
isomorphic to the partially ordered set of proper filters of G.
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