Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T21:14:21.807Z Has data issue: false hasContentIssue false

Finite groups that need more generators than any proper quotient

Published online by Cambridge University Press:  09 April 2009

Francesca Dalla Volta
Affiliation:
Dipartimento di Matematica “F. Enriques” Universitá di MilanoVia Saldini 50, 20133 MilanoItaly e-mail: [email protected]
Andrea Lucchini
Affiliation:
Dipartimento di Elettronica per l'Automazione Università di BresciaVia Branze 38, 25123 BresciaItaly e-mail: [email protected]. unibs. it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A structure theorem is proved for finite groups with the property that, for some integer m with m ≥ 2, every proper quotient group can be generated by m elements but the group itself cannot.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Aschbacher, M. and Guralnick, R., ‘Some applications of the first cohomology group’, J. Algebra 90 (1984), 446460.Google Scholar
[2]Cossey, J., Gruenberg, K. W. and Kovács, L. G., ‘The presentation rank of a direct product of finite groups’, J. Algebra 28 (1974), 597603.Google Scholar
[3]Gaschütz, W., ‘Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden’, Math. Z. 60 (1954), 274286.Google Scholar
[4]Gaschütz, W., ‘Zu einem von B. H. und H. Neumann gestellten Problem’, Math. Nachr. 14 (1955), 249252.Google Scholar
[5]Gaschütz, W., ‘Die eulersche funktion endlicher auflösbarer gruppen’, Illinois J. Math. 3 (1959), 469476.Google Scholar
[6]Gruenberg, K. W., ‘Groups of non-zero presentation rank’, Symposia Math. 17 (1976), 215224.Google Scholar
[7]Gruenberg, K. W., Relation modules of finite groups, CBMS No. 25 (Amer. Math. Soc., Providence, 1976).Google Scholar
[8]Hall, P., ‘The Eulerian functions of a group’, Quart. J. Math. 7 (1936), 134151.Google Scholar
[9]Kimmerle, W. and Williams, J. S., ‘On minimal relation modules and l-cohomology of finite groups’, Arch. Math. 42 (1984), 214223.Google Scholar
[10]Lucchini, A., ‘Generators and minimal normal subgroups’, Arch. Math. 64 (1995), 273276.Google Scholar
[11]Lucchini, A. and Menegazzo, F., ‘Generators for finite groups with a unique minimal normal subgroup’, Rend. Sem. Mat. Univ. Padova, to appear.Google Scholar
[12]Roggenkamp, W., ‘Relation modules of finite groups and related topics’, Algebra i Logika 12 (1973), 351369.Google Scholar
[13]Wiegold, J., ‘Growth sequences of finite groups’, J. Austral. Math. Soc. 17 (1974), 133141.Google Scholar
[14]Wiegold, J., ‘Growth sequences of finite groups II’, J. Austral. Math. Soc. 20 (1975), 225229.Google Scholar
[15]Wiegold, J., ‘Growth sequences of finite groups III’, J. Austral. Math. Soc. Ser. A 25 (1978), 142144.CrossRefGoogle Scholar
[16]Wiegold, J., ‘Growth sequences of finite groups IV’, J. Austral. Math. Soc. Ser. A 29 (1980), 1416.CrossRefGoogle Scholar